Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088275890> ?p ?o ?g. }
- W3088275890 endingPage "2066" @default.
- W3088275890 startingPage "2053" @default.
- W3088275890 abstract "Abstract. Organic compounds residing near the surface of atmospheric aerosol particles are exposed to chemical reactions initiated by gas-phase oxidants, such as hydroxyl (OH) radicals. Aqueous droplets composed of inorganic salts and organic compounds can undergo phase separation into two liquid phases, depending on aerosol composition and relative humidity (RH). Such phase behavior can govern the surface characteristics and morphology of the aerosols, which in turn affect the heterogeneous reactivity of organic compounds toward gas-phase oxidants. In this work, we used an aerosol flow tube reactor coupled with an atmospheric pressure ionization source (direct analysis in real time) and a high-resolution mass spectrometer to investigate how phase separation in model aqueous droplets containing an inorganic salt (ammonium sulfate, AS) and an organic acid (3-methylglutaric acid, 3-MGA) with an organic-to-inorganic dry mass ratio (OIR) of 1 alters the heterogeneous OH reactivity. At high RH, 3-MGA/AS aerosols were aqueous droplets with a single liquid phase. When the RH decreased, aqueous 3-MGA/AS droplets underwent phase separation at ∼75 % RH. Once the droplets were phase-separated, they exhibited either a core–shell, partially engulfed or a transition from core–shell to partially engulfed structure, with an organic-rich outer phase and an inorganic-rich inner phase. The kinetics, quantified by an effective heterogenous OH rate constant, was found to increase gradually from 1.01±0.02×10-12 to 1.73±0.02×10-12 cm3 molec.−1 s−1 when the RH decreased from 88 % to 55 %. The heterogeneous reactivity of phase-separated droplets is slightly higher than that of aqueous droplets with a single liquid phase. This could be explained by the finding that when the RH decreases, higher concentrations of organic molecules (i.e., 3-MGA) are present at or near the droplet surface, which are more readily exposed to OH oxidation, as demonstrated by phase separation measurements and model simulations. This could increase the reactive collision probability between 3-MGA molecules and OH radicals dissolved near the droplet surface and secondary chain reactions. Even for phase-separated droplets with a fully established core–shell structure, the diffusion rate of organic molecules across the organic-rich outer shell is predicted to be fast in this system. Thus, the overall rate of reactions is likely governed by the surface concentration of 3-MGA rather than a diffusion limitation. Overall, understanding the aerosol phase state (single liquid phase versus two separate liquid phases) is essential to better probe the heterogenous reactivity under different aerosol chemical composition and environmental conditions (e.g., RH)." @default.
- W3088275890 created "2020-10-01" @default.
- W3088275890 creator A5015204180 @default.
- W3088275890 creator A5025924942 @default.
- W3088275890 creator A5029051021 @default.
- W3088275890 creator A5042815819 @default.
- W3088275890 creator A5047608068 @default.
- W3088275890 creator A5061946299 @default.
- W3088275890 creator A5066965102 @default.
- W3088275890 creator A5067019268 @default.
- W3088275890 creator A5074944478 @default.
- W3088275890 creator A5090701573 @default.
- W3088275890 date "2021-02-11" @default.
- W3088275890 modified "2023-10-01" @default.
- W3088275890 title "Effects of liquid–liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic–organic aerosols: insights from methylglutaric acid and ammonium sulfate particles" @default.
- W3088275890 cites W1492174271 @default.
- W3088275890 cites W1657675344 @default.
- W3088275890 cites W1787473029 @default.
- W3088275890 cites W1805350699 @default.
- W3088275890 cites W1839426343 @default.
- W3088275890 cites W1862801724 @default.
- W3088275890 cites W1897778326 @default.
- W3088275890 cites W1963920118 @default.
- W3088275890 cites W1965716001 @default.
- W3088275890 cites W1968696455 @default.
- W3088275890 cites W1971936786 @default.
- W3088275890 cites W1972590681 @default.
- W3088275890 cites W1986418366 @default.
- W3088275890 cites W1993094858 @default.
- W3088275890 cites W2001219782 @default.
- W3088275890 cites W2002631803 @default.
- W3088275890 cites W2003780414 @default.
- W3088275890 cites W2005266319 @default.
- W3088275890 cites W2008045014 @default.
- W3088275890 cites W2021064175 @default.
- W3088275890 cites W2027848276 @default.
- W3088275890 cites W2028503574 @default.
- W3088275890 cites W2031454636 @default.
- W3088275890 cites W2037636973 @default.
- W3088275890 cites W2047200483 @default.
- W3088275890 cites W2047324399 @default.
- W3088275890 cites W2048943000 @default.
- W3088275890 cites W2049816315 @default.
- W3088275890 cites W2055714082 @default.
- W3088275890 cites W2072155736 @default.
- W3088275890 cites W2102580742 @default.
- W3088275890 cites W2104277321 @default.
- W3088275890 cites W2105665948 @default.
- W3088275890 cites W2111511613 @default.
- W3088275890 cites W2123717816 @default.
- W3088275890 cites W2125740784 @default.
- W3088275890 cites W2126105726 @default.
- W3088275890 cites W2133207065 @default.
- W3088275890 cites W2133676646 @default.
- W3088275890 cites W2140969781 @default.
- W3088275890 cites W2152309424 @default.
- W3088275890 cites W2155892228 @default.
- W3088275890 cites W2161516788 @default.
- W3088275890 cites W2164264901 @default.
- W3088275890 cites W2165269394 @default.
- W3088275890 cites W2319532375 @default.
- W3088275890 cites W2329838501 @default.
- W3088275890 cites W2335021041 @default.
- W3088275890 cites W2335563796 @default.
- W3088275890 cites W2419374219 @default.
- W3088275890 cites W2465382752 @default.
- W3088275890 cites W2516409020 @default.
- W3088275890 cites W2520021165 @default.
- W3088275890 cites W2580083031 @default.
- W3088275890 cites W2582985530 @default.
- W3088275890 cites W2588060014 @default.
- W3088275890 cites W2613395202 @default.
- W3088275890 cites W2737527781 @default.
- W3088275890 cites W2793872077 @default.
- W3088275890 cites W2800576643 @default.
- W3088275890 cites W2899631861 @default.
- W3088275890 cites W2901321835 @default.
- W3088275890 cites W2901396293 @default.
- W3088275890 cites W2922000500 @default.
- W3088275890 cites W2947892774 @default.
- W3088275890 cites W2949145352 @default.
- W3088275890 cites W2968831009 @default.
- W3088275890 cites W2990437165 @default.
- W3088275890 cites W3004424914 @default.
- W3088275890 cites W3004760000 @default.
- W3088275890 cites W3027874447 @default.
- W3088275890 cites W959091180 @default.
- W3088275890 doi "https://doi.org/10.5194/acp-21-2053-2021" @default.
- W3088275890 hasPublicationYear "2021" @default.
- W3088275890 type Work @default.
- W3088275890 sameAs 3088275890 @default.
- W3088275890 citedByCount "13" @default.
- W3088275890 countsByYear W30882758902021 @default.
- W3088275890 countsByYear W30882758902022 @default.
- W3088275890 countsByYear W30882758902023 @default.
- W3088275890 crossrefType "journal-article" @default.
- W3088275890 hasAuthorship W3088275890A5015204180 @default.
- W3088275890 hasAuthorship W3088275890A5025924942 @default.