Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088297551> ?p ?o ?g. }
- W3088297551 endingPage "117921" @default.
- W3088297551 startingPage "117921" @default.
- W3088297551 abstract "Abstract Approximately half of satellite aerosol retrievals are missing that limits the application of satellite data in PM2.5 pollution monitoring. To obtain spatiotemporally continuous PM2.5 distributions, various gap-filling methods have been developed, but have rarely been evaluated. Here, we reviewed and summarized four types of gap-filling strategies, and applied them to a random forest PM2.5 prediction model that incorporated ground observations, chemical transport model (CTM) simulations, and satellite AOD for predicting daily PM2.5 concentrations at a 1-km resolution in 2013 in the Beijing-Tianjin-Hebei region and the Yangtze River Delta. The model out-of-bag predictions were compared with national station measurements and external measurements to assess the performance of different gap-filling methods. We also conducted a by-city cross-validation and characterized the spatial distributions of PM2.5 prediction when the AOD coverage was low. We found that the methods filling in missing data by regression, i.e. multiple imputation and decision tree, performed robustly to characterizing PM2.5 variation at a high spatial resolution and the method filling in missing PM2.5 predictions with decision tree overcame the problem of time-consuming computations. The method using spatiotemporal trends to fill in missing data, i.e. ordinary kriging and generalized additive mixed model, may be overrated in statistical evaluation tests, and predicted artificially oversmoothed PM2.5 spatial distributions. We also revealed that CTM simulations benefited the prediction of PM2.5 spatial distribution in all the models with various gap-filling strategies with higher prediction accuracy in the by-city cross-validation. We noticed that the PM2.5 prediction was not sensitive to the resolution of CTM simulations and even the 12-km resolution CTM simulations benefited the high-resolution PM2.5 prediction." @default.
- W3088297551 created "2020-10-01" @default.
- W3088297551 creator A5013221837 @default.
- W3088297551 creator A5013523273 @default.
- W3088297551 creator A5022350572 @default.
- W3088297551 creator A5027695369 @default.
- W3088297551 creator A5039837606 @default.
- W3088297551 creator A5052865881 @default.
- W3088297551 creator A5054806035 @default.
- W3088297551 creator A5074053393 @default.
- W3088297551 creator A5081118693 @default.
- W3088297551 creator A5081675173 @default.
- W3088297551 creator A5082142226 @default.
- W3088297551 date "2021-01-01" @default.
- W3088297551 modified "2023-10-12" @default.
- W3088297551 title "Evaluation of gap-filling approaches in satellite-based daily PM2.5 prediction models" @default.
- W3088297551 cites W1523804527 @default.
- W3088297551 cites W1862113676 @default.
- W3088297551 cites W1952071470 @default.
- W3088297551 cites W1997159874 @default.
- W3088297551 cites W2000109687 @default.
- W3088297551 cites W2010026170 @default.
- W3088297551 cites W2083944525 @default.
- W3088297551 cites W2090436332 @default.
- W3088297551 cites W2100033296 @default.
- W3088297551 cites W2102093423 @default.
- W3088297551 cites W2102494515 @default.
- W3088297551 cites W2123768945 @default.
- W3088297551 cites W2132111132 @default.
- W3088297551 cites W2154132490 @default.
- W3088297551 cites W2233873426 @default.
- W3088297551 cites W2256433610 @default.
- W3088297551 cites W2261936125 @default.
- W3088297551 cites W2297827415 @default.
- W3088297551 cites W2312602772 @default.
- W3088297551 cites W2314479789 @default.
- W3088297551 cites W2316167246 @default.
- W3088297551 cites W2316257305 @default.
- W3088297551 cites W2323483937 @default.
- W3088297551 cites W2330638519 @default.
- W3088297551 cites W2470476097 @default.
- W3088297551 cites W2480175994 @default.
- W3088297551 cites W2525243525 @default.
- W3088297551 cites W2567586762 @default.
- W3088297551 cites W2588978790 @default.
- W3088297551 cites W2607805340 @default.
- W3088297551 cites W2620300958 @default.
- W3088297551 cites W2742946820 @default.
- W3088297551 cites W2761974490 @default.
- W3088297551 cites W2776069591 @default.
- W3088297551 cites W2790202404 @default.
- W3088297551 cites W2898407312 @default.
- W3088297551 cites W2900802555 @default.
- W3088297551 cites W2900907778 @default.
- W3088297551 cites W2901411895 @default.
- W3088297551 cites W2903932790 @default.
- W3088297551 cites W2904851601 @default.
- W3088297551 cites W2905219620 @default.
- W3088297551 cites W2908201380 @default.
- W3088297551 cites W2909938372 @default.
- W3088297551 cites W2912750253 @default.
- W3088297551 cites W2937452004 @default.
- W3088297551 cites W2945525098 @default.
- W3088297551 cites W2946808229 @default.
- W3088297551 cites W2947810652 @default.
- W3088297551 cites W2952297896 @default.
- W3088297551 cites W2954289137 @default.
- W3088297551 cites W2967749546 @default.
- W3088297551 cites W2977776795 @default.
- W3088297551 cites W2981441128 @default.
- W3088297551 cites W3023838324 @default.
- W3088297551 cites W3122817556 @default.
- W3088297551 doi "https://doi.org/10.1016/j.atmosenv.2020.117921" @default.
- W3088297551 hasPublicationYear "2021" @default.
- W3088297551 type Work @default.
- W3088297551 sameAs 3088297551 @default.
- W3088297551 citedByCount "62" @default.
- W3088297551 countsByYear W30882975512021 @default.
- W3088297551 countsByYear W30882975512022 @default.
- W3088297551 countsByYear W30882975512023 @default.
- W3088297551 crossrefType "journal-article" @default.
- W3088297551 hasAuthorship W3088297551A5013221837 @default.
- W3088297551 hasAuthorship W3088297551A5013523273 @default.
- W3088297551 hasAuthorship W3088297551A5022350572 @default.
- W3088297551 hasAuthorship W3088297551A5027695369 @default.
- W3088297551 hasAuthorship W3088297551A5039837606 @default.
- W3088297551 hasAuthorship W3088297551A5052865881 @default.
- W3088297551 hasAuthorship W3088297551A5054806035 @default.
- W3088297551 hasAuthorship W3088297551A5074053393 @default.
- W3088297551 hasAuthorship W3088297551A5081118693 @default.
- W3088297551 hasAuthorship W3088297551A5081675173 @default.
- W3088297551 hasAuthorship W3088297551A5082142226 @default.
- W3088297551 hasConcept C127413603 @default.
- W3088297551 hasConcept C146978453 @default.
- W3088297551 hasConcept C153294291 @default.
- W3088297551 hasConcept C19269812 @default.
- W3088297551 hasConcept C205649164 @default.
- W3088297551 hasConcept C39432304 @default.