Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088335020> ?p ?o ?g. }
- W3088335020 endingPage "3243" @default.
- W3088335020 startingPage "3226" @default.
- W3088335020 abstract "Tropical cyclone (TC) intensity estimation is an important task in meteorological research. Meanwhile, TC intensity estimation performance can be improved by developing advanced machine learning techniques using the newly emerged high-quality multispectral images (MSIs) acquired by FY-4 meteorological satellite of China. To this end, this article proposes a novel model, tensor-based convolutional neural network (TCNN). Not only being a deep network entirely formulated in tensor algebra, but TCNN also establishes the mathematical connections between tensor decomposition and CNN operations with tensor contraction. Moreover, TCNN adopts a multitask structure, which consists of a classification network for intensity categorization and a regression network for wind speed estimation. It allows the regression network to leverage the outcome of the classification network, thus ensuring intensity estimation accuracy. In addition, two alternative TCNN models, coupled TCNN (C-TCNN) and Tucker TCNN (T-TCNN), are designed to automatically deal with invalid band data in the FY-4 MSIs, which has been a practical issue with the data. Experimental results prove that the proposed network is accurate and functional. They also demonstrate the advantages of TCNN over other TC intensity estimation methods, showing that C-TCNN and T-TCNN outperform several classic models and the state-of-the-art models based on CNN." @default.
- W3088335020 created "2020-10-01" @default.
- W3088335020 creator A5035856274 @default.
- W3088335020 creator A5070536551 @default.
- W3088335020 date "2021-04-01" @default.
- W3088335020 modified "2023-10-12" @default.
- W3088335020 title "A Novel Tensor Network for Tropical Cyclone Intensity Estimation" @default.
- W3088335020 cites W1498436455 @default.
- W3088335020 cites W1523493493 @default.
- W3088335020 cites W1966843433 @default.
- W3088335020 cites W1983364832 @default.
- W3088335020 cites W2013912476 @default.
- W3088335020 cites W2018282388 @default.
- W3088335020 cites W2019838069 @default.
- W3088335020 cites W2024165284 @default.
- W3088335020 cites W2034630107 @default.
- W3088335020 cites W2040036684 @default.
- W3088335020 cites W2053839664 @default.
- W3088335020 cites W2053950927 @default.
- W3088335020 cites W2057307785 @default.
- W3088335020 cites W2060758175 @default.
- W3088335020 cites W2078770669 @default.
- W3088335020 cites W2082892580 @default.
- W3088335020 cites W2095168618 @default.
- W3088335020 cites W2097117768 @default.
- W3088335020 cites W2112796928 @default.
- W3088335020 cites W2124363224 @default.
- W3088335020 cites W2139187550 @default.
- W3088335020 cites W2150130907 @default.
- W3088335020 cites W2153963722 @default.
- W3088335020 cites W2157286938 @default.
- W3088335020 cites W2171828649 @default.
- W3088335020 cites W2194775991 @default.
- W3088335020 cites W2324784787 @default.
- W3088335020 cites W2342432191 @default.
- W3088335020 cites W2516041031 @default.
- W3088335020 cites W2566771666 @default.
- W3088335020 cites W2606967921 @default.
- W3088335020 cites W2611655888 @default.
- W3088335020 cites W2733849967 @default.
- W3088335020 cites W2757789861 @default.
- W3088335020 cites W2766018291 @default.
- W3088335020 cites W2777961969 @default.
- W3088335020 cites W2790754721 @default.
- W3088335020 cites W2805465265 @default.
- W3088335020 cites W2890484379 @default.
- W3088335020 cites W2896057526 @default.
- W3088335020 cites W2908320224 @default.
- W3088335020 cites W2913323966 @default.
- W3088335020 cites W2919115771 @default.
- W3088335020 cites W2962770389 @default.
- W3088335020 cites W2963181993 @default.
- W3088335020 cites W2963374186 @default.
- W3088335020 cites W2983514666 @default.
- W3088335020 cites W2987318888 @default.
- W3088335020 cites W2987641148 @default.
- W3088335020 cites W3037369538 @default.
- W3088335020 cites W306967842 @default.
- W3088335020 cites W3105357426 @default.
- W3088335020 cites W4239510810 @default.
- W3088335020 cites W65019361 @default.
- W3088335020 doi "https://doi.org/10.1109/tgrs.2020.3017709" @default.
- W3088335020 hasPublicationYear "2021" @default.
- W3088335020 type Work @default.
- W3088335020 sameAs 3088335020 @default.
- W3088335020 citedByCount "15" @default.
- W3088335020 countsByYear W30883350202021 @default.
- W3088335020 countsByYear W30883350202022 @default.
- W3088335020 countsByYear W30883350202023 @default.
- W3088335020 crossrefType "journal-article" @default.
- W3088335020 hasAuthorship W3088335020A5035856274 @default.
- W3088335020 hasAuthorship W3088335020A5070536551 @default.
- W3088335020 hasConcept C120665830 @default.
- W3088335020 hasConcept C121332964 @default.
- W3088335020 hasConcept C127313418 @default.
- W3088335020 hasConcept C153294291 @default.
- W3088335020 hasConcept C29141058 @default.
- W3088335020 hasConcept C41008148 @default.
- W3088335020 hasConcept C49204034 @default.
- W3088335020 hasConcept C62649853 @default.
- W3088335020 hasConcept C93038891 @default.
- W3088335020 hasConceptScore W3088335020C120665830 @default.
- W3088335020 hasConceptScore W3088335020C121332964 @default.
- W3088335020 hasConceptScore W3088335020C127313418 @default.
- W3088335020 hasConceptScore W3088335020C153294291 @default.
- W3088335020 hasConceptScore W3088335020C29141058 @default.
- W3088335020 hasConceptScore W3088335020C41008148 @default.
- W3088335020 hasConceptScore W3088335020C49204034 @default.
- W3088335020 hasConceptScore W3088335020C62649853 @default.
- W3088335020 hasConceptScore W3088335020C93038891 @default.
- W3088335020 hasFunder F4320321001 @default.
- W3088335020 hasFunder F4320321881 @default.
- W3088335020 hasFunder F4320321885 @default.
- W3088335020 hasIssue "4" @default.
- W3088335020 hasLocation W30883350201 @default.
- W3088335020 hasOpenAccess W3088335020 @default.
- W3088335020 hasPrimaryLocation W30883350201 @default.
- W3088335020 hasRelatedWork W2029113254 @default.