Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088341007> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3088341007 endingPage "526" @default.
- W3088341007 startingPage "514" @default.
- W3088341007 abstract "The virtualization concept and elasticity feature of cloud computing enable users to request resources on-demand and in the pay-as-you-go model. However, the high flexibility of the model makes the on-time resource scaling problem more complex. A variety of techniques such as threshold-based rules, time series analysis, or control theory are utilized to increase the efficiency of dynamic scaling of resources. However, the inherent dynamicity of cloud-hosted applications requires autonomic and adaptable systems that learn from the environment in real-time. Reinforcement Learning (RL) is a paradigm that requires some agents to monitor the surroundings and regularly perform an action based on the observed states. RL has a weakness to handle high dimensional state space problems. Deep-RL models are a recent breakthrough for modeling and learning in complex state space problems. In this article, we propose a Hybrid Anomaly-aware Deep Reinforcement Learning-based Resource Scaling (ADRL) for dynamic scaling of resources in the cloud. ADRL takes advantage of anomaly detection techniques to increase the stability of decision-makers by triggering actions in response to the identified anomalous states in the system. Two levels of global and local decision-makers are introduced to handle the required scaling actions. An extensive set of experiments for different types of anomaly problems shows that ADRL can significantly improve the quality of service with less number of actions and increased stability of the system." @default.
- W3088341007 created "2020-10-01" @default.
- W3088341007 creator A5000172227 @default.
- W3088341007 creator A5006068066 @default.
- W3088341007 creator A5069895484 @default.
- W3088341007 date "2021-03-01" @default.
- W3088341007 modified "2023-09-30" @default.
- W3088341007 title "ADRL: A Hybrid Anomaly-Aware Deep Reinforcement Learning-Based Resource Scaling in Clouds" @default.
- W3088341007 cites W1995443851 @default.
- W3088341007 cites W2018836191 @default.
- W3088341007 cites W2040349403 @default.
- W3088341007 cites W2045287414 @default.
- W3088341007 cites W2079862709 @default.
- W3088341007 cites W2124682147 @default.
- W3088341007 cites W2125262761 @default.
- W3088341007 cites W2126160525 @default.
- W3088341007 cites W2138583691 @default.
- W3088341007 cites W2172243357 @default.
- W3088341007 cites W2296719434 @default.
- W3088341007 cites W2559868611 @default.
- W3088341007 cites W2587964702 @default.
- W3088341007 cites W2597068831 @default.
- W3088341007 cites W2615623687 @default.
- W3088341007 cites W2620387295 @default.
- W3088341007 cites W2726256050 @default.
- W3088341007 cites W2737934037 @default.
- W3088341007 cites W2784011956 @default.
- W3088341007 cites W2906130057 @default.
- W3088341007 cites W4229934775 @default.
- W3088341007 cites W4252214219 @default.
- W3088341007 doi "https://doi.org/10.1109/tpds.2020.3025914" @default.
- W3088341007 hasPublicationYear "2021" @default.
- W3088341007 type Work @default.
- W3088341007 sameAs 3088341007 @default.
- W3088341007 citedByCount "24" @default.
- W3088341007 countsByYear W30883410072021 @default.
- W3088341007 countsByYear W30883410072022 @default.
- W3088341007 countsByYear W30883410072023 @default.
- W3088341007 crossrefType "journal-article" @default.
- W3088341007 hasAuthorship W3088341007A5000172227 @default.
- W3088341007 hasAuthorship W3088341007A5006068066 @default.
- W3088341007 hasAuthorship W3088341007A5069895484 @default.
- W3088341007 hasConcept C105795698 @default.
- W3088341007 hasConcept C111919701 @default.
- W3088341007 hasConcept C120314980 @default.
- W3088341007 hasConcept C154945302 @default.
- W3088341007 hasConcept C2524010 @default.
- W3088341007 hasConcept C2780598303 @default.
- W3088341007 hasConcept C33923547 @default.
- W3088341007 hasConcept C41008148 @default.
- W3088341007 hasConcept C739882 @default.
- W3088341007 hasConcept C79974875 @default.
- W3088341007 hasConcept C97541855 @default.
- W3088341007 hasConcept C99844830 @default.
- W3088341007 hasConceptScore W3088341007C105795698 @default.
- W3088341007 hasConceptScore W3088341007C111919701 @default.
- W3088341007 hasConceptScore W3088341007C120314980 @default.
- W3088341007 hasConceptScore W3088341007C154945302 @default.
- W3088341007 hasConceptScore W3088341007C2524010 @default.
- W3088341007 hasConceptScore W3088341007C2780598303 @default.
- W3088341007 hasConceptScore W3088341007C33923547 @default.
- W3088341007 hasConceptScore W3088341007C41008148 @default.
- W3088341007 hasConceptScore W3088341007C739882 @default.
- W3088341007 hasConceptScore W3088341007C79974875 @default.
- W3088341007 hasConceptScore W3088341007C97541855 @default.
- W3088341007 hasConceptScore W3088341007C99844830 @default.
- W3088341007 hasIssue "3" @default.
- W3088341007 hasLocation W30883410071 @default.
- W3088341007 hasOpenAccess W3088341007 @default.
- W3088341007 hasPrimaryLocation W30883410071 @default.
- W3088341007 hasRelatedWork W1488196161 @default.
- W3088341007 hasRelatedWork W1509429107 @default.
- W3088341007 hasRelatedWork W1562959674 @default.
- W3088341007 hasRelatedWork W1970004300 @default.
- W3088341007 hasRelatedWork W2155747080 @default.
- W3088341007 hasRelatedWork W2213644644 @default.
- W3088341007 hasRelatedWork W2383532021 @default.
- W3088341007 hasRelatedWork W2923653485 @default.
- W3088341007 hasRelatedWork W2957776456 @default.
- W3088341007 hasRelatedWork W4210409506 @default.
- W3088341007 hasVolume "32" @default.
- W3088341007 isParatext "false" @default.
- W3088341007 isRetracted "false" @default.
- W3088341007 magId "3088341007" @default.
- W3088341007 workType "article" @default.