Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088354906> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3088354906 endingPage "9" @default.
- W3088354906 startingPage "1" @default.
- W3088354906 abstract "The eccentric connectivity polynomial (ECP) of a connected graph<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M2><mml:mi>G</mml:mi><mml:mo>=</mml:mo><mml:mfenced open=( close=) separators=|><mml:mrow><mml:mi>V</mml:mi><mml:mfenced open=( close=) separators=|><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mi>E</mml:mi><mml:mfenced open=( close=) separators=|><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:math>is described as<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M3><mml:msup><mml:mrow><mml:mi>ξ</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msup><mml:mfenced open=( close=) separators=|><mml:mrow><mml:mi>G</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mstyle displaystyle=true><mml:msub><mml:mrow><mml:mo stretchy=false>∑</mml:mo></mml:mrow><mml:mrow><mml:mi>a</mml:mi><mml:mo>∈</mml:mo><mml:mi>V</mml:mi><mml:mfenced open=( close=) separators=|><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:msub><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>deg</mml:mi></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msub><mml:mfenced open=( close=) separators=|><mml:mrow><mml:mi>a</mml:mi></mml:mrow></mml:mfenced><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>e</mml:mi><mml:msub><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msub><mml:mfenced open=( close=) separators=|><mml:mrow><mml:mi>a</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:msup></mml:mrow></mml:mstyle></mml:math>, where<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M4><mml:mi>e</mml:mi><mml:msub><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msub><mml:mfenced open=( close=) separators=|><mml:mrow><mml:mi>a</mml:mi></mml:mrow></mml:mfenced></mml:math>and<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M5><mml:msub><mml:mrow><mml:mi mathvariant=normal>deg</mml:mi></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msub><mml:mfenced open=( close=) separators=|><mml:mrow><mml:mi>a</mml:mi></mml:mrow></mml:mfenced></mml:math>represent the eccentricity and the degree of the vertex<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M6><mml:mi>a</mml:mi></mml:math>, respectively. The eccentric connectivity index (ECI) can also be acquired from<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M7><mml:msup><mml:mrow><mml:mi>ξ</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msup><mml:mfenced open=( close=) separators=|><mml:mrow><mml:mi>G</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi></mml:mrow></mml:mfenced></mml:math>by taking its first derivatives at<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M8><mml:mi>y</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:math>. The ECI has been widely used for analyzing both the boiling point and melting point for chemical compounds and medicinal drugs in QSPR/QSAR studies. As the extension of ECI, the ECP also performs a pivotal role in pharmaceutical science and chemical engineering. Graph products conveniently play an important role in many combinatorial applications, graph decompositions, pure mathematics, and applied mathematics. In this article, we work out the ECP of<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M9><mml:mi mathvariant=normal>ℱ</mml:mi></mml:math>-sum of graphs. Moreover, we derive the explicit expressions of ECP for well-known graph products such as generalized hierarchical, cluster, and corona products of graphs. We also apply these outcomes to deduce the ECP of some classes of chemical graphs." @default.
- W3088354906 created "2020-10-01" @default.
- W3088354906 creator A5004471925 @default.
- W3088354906 creator A5024364073 @default.
- W3088354906 creator A5068679217 @default.
- W3088354906 date "2020-05-31" @default.
- W3088354906 modified "2023-10-17" @default.
- W3088354906 title "On the Eccentric Connectivity Polynomial of <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:mi mathvariant=normal>ℱ</mml:mi></mml:math>-Sum of Connected Graphs" @default.
- W3088354906 cites W1968052199 @default.
- W3088354906 cites W1990463276 @default.
- W3088354906 cites W1992105048 @default.
- W3088354906 cites W1995591964 @default.
- W3088354906 cites W1997258637 @default.
- W3088354906 cites W2005203581 @default.
- W3088354906 cites W2029382024 @default.
- W3088354906 cites W2050428553 @default.
- W3088354906 cites W2090731186 @default.
- W3088354906 cites W2137381663 @default.
- W3088354906 cites W2160321012 @default.
- W3088354906 cites W2315200540 @default.
- W3088354906 cites W2478779766 @default.
- W3088354906 cites W2525866606 @default.
- W3088354906 cites W2563100211 @default.
- W3088354906 cites W2743686341 @default.
- W3088354906 cites W2807648060 @default.
- W3088354906 cites W2890409202 @default.
- W3088354906 cites W2978010002 @default.
- W3088354906 cites W3011899526 @default.
- W3088354906 doi "https://doi.org/10.1155/2020/5061682" @default.
- W3088354906 hasPublicationYear "2020" @default.
- W3088354906 type Work @default.
- W3088354906 sameAs 3088354906 @default.
- W3088354906 citedByCount "10" @default.
- W3088354906 countsByYear W30883549062020 @default.
- W3088354906 countsByYear W30883549062021 @default.
- W3088354906 countsByYear W30883549062022 @default.
- W3088354906 crossrefType "journal-article" @default.
- W3088354906 hasAuthorship W3088354906A5004471925 @default.
- W3088354906 hasAuthorship W3088354906A5024364073 @default.
- W3088354906 hasAuthorship W3088354906A5068679217 @default.
- W3088354906 hasBestOaLocation W30883549061 @default.
- W3088354906 hasConcept C11413529 @default.
- W3088354906 hasConcept C41008148 @default.
- W3088354906 hasConceptScore W3088354906C11413529 @default.
- W3088354906 hasConceptScore W3088354906C41008148 @default.
- W3088354906 hasFunder F4320323593 @default.
- W3088354906 hasLocation W30883549061 @default.
- W3088354906 hasLocation W30883549062 @default.
- W3088354906 hasOpenAccess W3088354906 @default.
- W3088354906 hasPrimaryLocation W30883549061 @default.
- W3088354906 hasRelatedWork W2051487156 @default.
- W3088354906 hasRelatedWork W2052122378 @default.
- W3088354906 hasRelatedWork W2053286651 @default.
- W3088354906 hasRelatedWork W2073681303 @default.
- W3088354906 hasRelatedWork W2317200988 @default.
- W3088354906 hasRelatedWork W2544423928 @default.
- W3088354906 hasRelatedWork W2947381795 @default.
- W3088354906 hasRelatedWork W2181413294 @default.
- W3088354906 hasRelatedWork W2181743346 @default.
- W3088354906 hasRelatedWork W2187401768 @default.
- W3088354906 hasVolume "2020" @default.
- W3088354906 isParatext "false" @default.
- W3088354906 isRetracted "false" @default.
- W3088354906 magId "3088354906" @default.
- W3088354906 workType "article" @default.