Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088391629> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3088391629 abstract "Guessing Random Additive Noise Decoding (GRAND) is a recently proposed universal decoding algorithm for linear error correcting codes. Since GRAND does not depend on the structure of the code, it can be used for any code encountered in contemporary communication standards or may even be used for random linear network coding. This property makes this new algorithm particularly appealing. Instead of trying to decode the received vector, GRAND attempts to identify the noise that corrupted the codeword. To that end, GRAND relies on the generation of test error patterns that are successively applied to the received vector. In this paper, we propose the first hardware architecture for the GRAND algorithm. Considering GRAND with ABandonment (GRANDAB) that limits the number of test patterns, the proposed architecture only needs <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$2+{sum}_{i=2}^n leftlfloorfrac{i}{2} rightrfloor$</tex> time steps to perform the <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>${sum}_{i=1}^3 binom{n}{i}$</tex> queries required when AB = 3. For a code length of 128, our proposed hardware architecture demonstrates only a fraction (1.2%) of the total number of performed queries as time steps. Synthesis result using TSMC 65nm CMOS technology shows that average throughputs of 32 Gbps to 64 Gbps can be achieved at an SNR of 10 dB for a code length of 128 and code rates rate higher than 0.75, transmitted over an AWGN channel. Comparisons with a decoder tailored for a (79, 64) BCH code show that the proposed architecture can achieve a slightly higher average throughput at high SNRs, while obtaining the same decoding performance." @default.
- W3088391629 created "2020-10-01" @default.
- W3088391629 creator A5025435396 @default.
- W3088391629 creator A5026006051 @default.
- W3088391629 creator A5078535844 @default.
- W3088391629 creator A5091600002 @default.
- W3088391629 date "2020-10-01" @default.
- W3088391629 modified "2023-10-14" @default.
- W3088391629 title "High-Throughput VLSI Architecture for GRAND" @default.
- W3088391629 cites W1965483199 @default.
- W3088391629 cites W1977467261 @default.
- W3088391629 cites W1995875735 @default.
- W3088391629 cites W2083774980 @default.
- W3088391629 cites W2084783904 @default.
- W3088391629 cites W2103398070 @default.
- W3088391629 cites W2106045225 @default.
- W3088391629 cites W2117476053 @default.
- W3088391629 cites W2130350209 @default.
- W3088391629 cites W2144253890 @default.
- W3088391629 cites W2150498905 @default.
- W3088391629 cites W2156826724 @default.
- W3088391629 cites W2162442687 @default.
- W3088391629 cites W2342204193 @default.
- W3088391629 cites W2398822086 @default.
- W3088391629 cites W2903561722 @default.
- W3088391629 cites W3021847272 @default.
- W3088391629 cites W3045960439 @default.
- W3088391629 cites W3098377107 @default.
- W3088391629 doi "https://doi.org/10.1109/sips50750.2020.9195254" @default.
- W3088391629 hasPublicationYear "2020" @default.
- W3088391629 type Work @default.
- W3088391629 sameAs 3088391629 @default.
- W3088391629 citedByCount "39" @default.
- W3088391629 countsByYear W30883916292019 @default.
- W3088391629 countsByYear W30883916292021 @default.
- W3088391629 countsByYear W30883916292022 @default.
- W3088391629 countsByYear W30883916292023 @default.
- W3088391629 crossrefType "proceedings-article" @default.
- W3088391629 hasAuthorship W3088391629A5025435396 @default.
- W3088391629 hasAuthorship W3088391629A5026006051 @default.
- W3088391629 hasAuthorship W3088391629A5078535844 @default.
- W3088391629 hasAuthorship W3088391629A5091600002 @default.
- W3088391629 hasBestOaLocation W30883916292 @default.
- W3088391629 hasConcept C11413529 @default.
- W3088391629 hasConcept C123657996 @default.
- W3088391629 hasConcept C142362112 @default.
- W3088391629 hasConcept C153207627 @default.
- W3088391629 hasConcept C153349607 @default.
- W3088391629 hasConcept C177264268 @default.
- W3088391629 hasConcept C199360897 @default.
- W3088391629 hasConcept C2776760102 @default.
- W3088391629 hasConcept C41008148 @default.
- W3088391629 hasConcept C57273362 @default.
- W3088391629 hasConcept C80444323 @default.
- W3088391629 hasConceptScore W3088391629C11413529 @default.
- W3088391629 hasConceptScore W3088391629C123657996 @default.
- W3088391629 hasConceptScore W3088391629C142362112 @default.
- W3088391629 hasConceptScore W3088391629C153207627 @default.
- W3088391629 hasConceptScore W3088391629C153349607 @default.
- W3088391629 hasConceptScore W3088391629C177264268 @default.
- W3088391629 hasConceptScore W3088391629C199360897 @default.
- W3088391629 hasConceptScore W3088391629C2776760102 @default.
- W3088391629 hasConceptScore W3088391629C41008148 @default.
- W3088391629 hasConceptScore W3088391629C57273362 @default.
- W3088391629 hasConceptScore W3088391629C80444323 @default.
- W3088391629 hasLocation W30883916291 @default.
- W3088391629 hasLocation W30883916292 @default.
- W3088391629 hasOpenAccess W3088391629 @default.
- W3088391629 hasPrimaryLocation W30883916291 @default.
- W3088391629 hasRelatedWork W2011287936 @default.
- W3088391629 hasRelatedWork W2016426937 @default.
- W3088391629 hasRelatedWork W2048861212 @default.
- W3088391629 hasRelatedWork W2061475625 @default.
- W3088391629 hasRelatedWork W2276297 @default.
- W3088391629 hasRelatedWork W2284916738 @default.
- W3088391629 hasRelatedWork W2378370674 @default.
- W3088391629 hasRelatedWork W2910428196 @default.
- W3088391629 hasRelatedWork W2915908452 @default.
- W3088391629 hasRelatedWork W2964955942 @default.
- W3088391629 isParatext "false" @default.
- W3088391629 isRetracted "false" @default.
- W3088391629 magId "3088391629" @default.
- W3088391629 workType "article" @default.