Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088402504> ?p ?o ?g. }
- W3088402504 endingPage "89" @default.
- W3088402504 startingPage "89" @default.
- W3088402504 abstract "One of the major and unfortunately unforeseen sources of background for the current generation of X-ray telescopes are few tens to hundreds of keV (soft) protons concentrated by the mirrors. One such telescope is the European Space Agency's (ESA) X-ray Multi-Mirror Mission (XMM-Newton). Its observing time lost due to background contamination is about 40%. This loss of observing time affects all the major broad science goals of this observatory, ranging from cosmology to astrophysics of neutron stars and black holes. The soft-proton background could dramatically impact future large X-ray missions such as the ESA planned Athena mission (http://www.the-athena-x-ray-observatory.eu/). Physical processes that trigger this background are still poorly understood. We use a machine learning (ML) approach to delineate related important parameters and to develop a model to predict the background contamination using 12 yr of XMM-Newton observations. As predictors we use the location of the satellite and solar and geomagnetic activity parameters. We revealed that the contamination is most strongly related to the distance in the southern direction, Z (XMM-Newton observations were in the southern hemisphere), the solar wind radial velocity, and the location on the magnetospheric magnetic field lines. We derived simple empirical models for the first two individual predictors and an ML model that utilizes an ensemble of the predictors (Extra-Trees Regressor) and gives better performance. Based on our analysis, future missions should minimize observations during times associated with high solar wind speed and avoid closed magnetic field lines, especially at the dusk flank region in the southern hemisphere." @default.
- W3088402504 created "2020-10-01" @default.
- W3088402504 creator A5000713204 @default.
- W3088402504 creator A5006384169 @default.
- W3088402504 creator A5013890200 @default.
- W3088402504 creator A5016012032 @default.
- W3088402504 creator A5028141629 @default.
- W3088402504 creator A5029648780 @default.
- W3088402504 creator A5040144256 @default.
- W3088402504 creator A5053311845 @default.
- W3088402504 creator A5054686903 @default.
- W3088402504 creator A5067935221 @default.
- W3088402504 creator A5075173892 @default.
- W3088402504 creator A5088979232 @default.
- W3088402504 creator A5090745221 @default.
- W3088402504 date "2020-11-06" @default.
- W3088402504 modified "2023-10-17" @default.
- W3088402504 title "Prediction and Understanding of Soft-proton Contamination in XMM-Newton: A Machine Learning Approach" @default.
- W3088402504 cites W1516976617 @default.
- W3088402504 cites W1587976434 @default.
- W3088402504 cites W1608574704 @default.
- W3088402504 cites W1665152549 @default.
- W3088402504 cites W1757987097 @default.
- W3088402504 cites W1813458278 @default.
- W3088402504 cites W1969844271 @default.
- W3088402504 cites W1977108829 @default.
- W3088402504 cites W1997102659 @default.
- W3088402504 cites W1998820031 @default.
- W3088402504 cites W1998983070 @default.
- W3088402504 cites W2001189809 @default.
- W3088402504 cites W2005492874 @default.
- W3088402504 cites W2011301426 @default.
- W3088402504 cites W2012563642 @default.
- W3088402504 cites W2036006391 @default.
- W3088402504 cites W2045483269 @default.
- W3088402504 cites W2054871050 @default.
- W3088402504 cites W2055043448 @default.
- W3088402504 cites W2056132907 @default.
- W3088402504 cites W2059008173 @default.
- W3088402504 cites W2069414247 @default.
- W3088402504 cites W2082316064 @default.
- W3088402504 cites W2083522098 @default.
- W3088402504 cites W2088375762 @default.
- W3088402504 cites W2146292423 @default.
- W3088402504 cites W2153287716 @default.
- W3088402504 cites W2154078330 @default.
- W3088402504 cites W2161501266 @default.
- W3088402504 cites W2342249984 @default.
- W3088402504 cites W2474432234 @default.
- W3088402504 cites W2585669498 @default.
- W3088402504 cites W2607578357 @default.
- W3088402504 cites W2613886945 @default.
- W3088402504 cites W2745813384 @default.
- W3088402504 cites W2785379947 @default.
- W3088402504 cites W2887865704 @default.
- W3088402504 cites W2911964244 @default.
- W3088402504 cites W2917699355 @default.
- W3088402504 cites W2920947047 @default.
- W3088402504 cites W2921817613 @default.
- W3088402504 cites W2954345439 @default.
- W3088402504 cites W2973729854 @default.
- W3088402504 cites W2991848305 @default.
- W3088402504 cites W2997591727 @default.
- W3088402504 cites W3003593381 @default.
- W3088402504 cites W3004716109 @default.
- W3088402504 cites W3010473019 @default.
- W3088402504 cites W3046632307 @default.
- W3088402504 cites W3098241383 @default.
- W3088402504 cites W3099435576 @default.
- W3088402504 cites W3100117570 @default.
- W3088402504 cites W3103145119 @default.
- W3088402504 cites W3103336428 @default.
- W3088402504 cites W3104844197 @default.
- W3088402504 cites W3104868546 @default.
- W3088402504 cites W3104916107 @default.
- W3088402504 cites W3106124767 @default.
- W3088402504 cites W3124821392 @default.
- W3088402504 cites W3125051198 @default.
- W3088402504 cites W3177382716 @default.
- W3088402504 cites W4211007730 @default.
- W3088402504 cites W4254751698 @default.
- W3088402504 doi "https://doi.org/10.3847/1538-4357/abbb8f" @default.
- W3088402504 hasPublicationYear "2020" @default.
- W3088402504 type Work @default.
- W3088402504 sameAs 3088402504 @default.
- W3088402504 citedByCount "9" @default.
- W3088402504 countsByYear W30884025042021 @default.
- W3088402504 countsByYear W30884025042022 @default.
- W3088402504 countsByYear W30884025042023 @default.
- W3088402504 crossrefType "journal-article" @default.
- W3088402504 hasAuthorship W3088402504A5000713204 @default.
- W3088402504 hasAuthorship W3088402504A5006384169 @default.
- W3088402504 hasAuthorship W3088402504A5013890200 @default.
- W3088402504 hasAuthorship W3088402504A5016012032 @default.
- W3088402504 hasAuthorship W3088402504A5028141629 @default.
- W3088402504 hasAuthorship W3088402504A5029648780 @default.
- W3088402504 hasAuthorship W3088402504A5040144256 @default.
- W3088402504 hasAuthorship W3088402504A5053311845 @default.