Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088411073> ?p ?o ?g. }
- W3088411073 endingPage "172056" @default.
- W3088411073 startingPage "172043" @default.
- W3088411073 abstract "Fault diagnosis of rotor systems is important to prevent unexpected failures. Recently, deep learning (DL) methods, such as a convolutional neural network (CNN), have been utilized in many research areas, including fault diagnosis. DL has gained significant attention thanks to its ability to efficiently learn proper features from input data. It is possible to learn enriched hierarchical features by making the DL architectures deeper; therefore, many studies have been conducted to stack the neural networks, which are the basic building blocks of DL, deeper. However, it becomes difficult to comprehensively train neural network architectures as they become deeper, due to problems in the flow of gradient information during the training phase. In this paper, a direct connection based CNN (DC-CNN) method is proposed to significantly improve training efficiency and diagnosis performance. DC-CNN connects feature maps of different layers within a CNN to improve the gradient information flow over the layers. These additional connections, however, can increase the number of trainable parameters within the network. To prevent problems that might be caused by an increased number of parameters, dimension reduction modules are also developed. Moreover, to consider the anisotropic characteristics inherent in rotor systems, the vibration images containing both spatial and temporal information are generated and utilized. The effectiveness of DC-CNN is validated using experimental data from a rotor testbed. The experimental results indicate that the proposed method outperforms other conventional approaches with a smaller number of parameters. Also, visualizations of the learned features indicate that the proposed method can learn much more effective and significant features. Furthermore, the proposed method outperforms other approaches under conditions of insufficient or noisy data." @default.
- W3088411073 created "2020-10-01" @default.
- W3088411073 creator A5040596221 @default.
- W3088411073 creator A5051700060 @default.
- W3088411073 creator A5072782690 @default.
- W3088411073 creator A5083627438 @default.
- W3088411073 creator A5084771659 @default.
- W3088411073 creator A5085835554 @default.
- W3088411073 date "2020-01-01" @default.
- W3088411073 modified "2023-10-11" @default.
- W3088411073 title "Direct Connection-Based Convolutional Neural Network (DC-CNN) for Fault Diagnosis of Rotor Systems" @default.
- W3088411073 cites W2033800551 @default.
- W3088411073 cites W2072713266 @default.
- W3088411073 cites W2102605133 @default.
- W3088411073 cites W2107878631 @default.
- W3088411073 cites W2173008373 @default.
- W3088411073 cites W2176952908 @default.
- W3088411073 cites W2194775991 @default.
- W3088411073 cites W2335783338 @default.
- W3088411073 cites W2566702409 @default.
- W3088411073 cites W2754767460 @default.
- W3088411073 cites W2764024122 @default.
- W3088411073 cites W2765226309 @default.
- W3088411073 cites W2768753204 @default.
- W3088411073 cites W2797187289 @default.
- W3088411073 cites W2807657100 @default.
- W3088411073 cites W2808496542 @default.
- W3088411073 cites W2813864053 @default.
- W3088411073 cites W2887286714 @default.
- W3088411073 cites W2903312299 @default.
- W3088411073 cites W2906578288 @default.
- W3088411073 cites W2909082165 @default.
- W3088411073 cites W2913289332 @default.
- W3088411073 cites W2917014261 @default.
- W3088411073 cites W2919115771 @default.
- W3088411073 cites W2924922918 @default.
- W3088411073 cites W2935938728 @default.
- W3088411073 cites W2939411050 @default.
- W3088411073 cites W2944544772 @default.
- W3088411073 cites W2947344279 @default.
- W3088411073 cites W2949533264 @default.
- W3088411073 cites W2962949934 @default.
- W3088411073 cites W2963446712 @default.
- W3088411073 cites W2964084166 @default.
- W3088411073 cites W2966040120 @default.
- W3088411073 cites W2971808039 @default.
- W3088411073 cites W2989938864 @default.
- W3088411073 cites W2991223025 @default.
- W3088411073 cites W3003576014 @default.
- W3088411073 cites W3020589325 @default.
- W3088411073 cites W3023396847 @default.
- W3088411073 cites W3027126966 @default.
- W3088411073 doi "https://doi.org/10.1109/access.2020.3024544" @default.
- W3088411073 hasPublicationYear "2020" @default.
- W3088411073 type Work @default.
- W3088411073 sameAs 3088411073 @default.
- W3088411073 citedByCount "18" @default.
- W3088411073 countsByYear W30884110732020 @default.
- W3088411073 countsByYear W30884110732021 @default.
- W3088411073 countsByYear W30884110732022 @default.
- W3088411073 countsByYear W30884110732023 @default.
- W3088411073 crossrefType "journal-article" @default.
- W3088411073 hasAuthorship W3088411073A5040596221 @default.
- W3088411073 hasAuthorship W3088411073A5051700060 @default.
- W3088411073 hasAuthorship W3088411073A5072782690 @default.
- W3088411073 hasAuthorship W3088411073A5083627438 @default.
- W3088411073 hasAuthorship W3088411073A5084771659 @default.
- W3088411073 hasAuthorship W3088411073A5085835554 @default.
- W3088411073 hasBestOaLocation W30884110731 @default.
- W3088411073 hasConcept C108583219 @default.
- W3088411073 hasConcept C127313418 @default.
- W3088411073 hasConcept C127413603 @default.
- W3088411073 hasConcept C138885662 @default.
- W3088411073 hasConcept C153180895 @default.
- W3088411073 hasConcept C154945302 @default.
- W3088411073 hasConcept C165205528 @default.
- W3088411073 hasConcept C17281054 @default.
- W3088411073 hasConcept C175551986 @default.
- W3088411073 hasConcept C2776401178 @default.
- W3088411073 hasConcept C31258907 @default.
- W3088411073 hasConcept C31395832 @default.
- W3088411073 hasConcept C41008148 @default.
- W3088411073 hasConcept C41895202 @default.
- W3088411073 hasConcept C50644808 @default.
- W3088411073 hasConcept C78519656 @default.
- W3088411073 hasConcept C81363708 @default.
- W3088411073 hasConceptScore W3088411073C108583219 @default.
- W3088411073 hasConceptScore W3088411073C127313418 @default.
- W3088411073 hasConceptScore W3088411073C127413603 @default.
- W3088411073 hasConceptScore W3088411073C138885662 @default.
- W3088411073 hasConceptScore W3088411073C153180895 @default.
- W3088411073 hasConceptScore W3088411073C154945302 @default.
- W3088411073 hasConceptScore W3088411073C165205528 @default.
- W3088411073 hasConceptScore W3088411073C17281054 @default.
- W3088411073 hasConceptScore W3088411073C175551986 @default.
- W3088411073 hasConceptScore W3088411073C2776401178 @default.
- W3088411073 hasConceptScore W3088411073C31258907 @default.
- W3088411073 hasConceptScore W3088411073C31395832 @default.