Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088424894> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3088424894 abstract "Machine learning (ML) technique behind the most existing abilities fields in several areas like languages processing, robotics, including medicine. The most important medical applications are the early prediction system for heart diseases especially, coronary artery disease (CAD) also called atherosclerosis. The need for a medical diagnosis support system is to detect atherosclerosis at the earlier stages to optimize the diagnosis, avoid the advanced cases, and reduce treatment costs. Here, a supervised machine learning medical diagnosis support system (MDSS) for atherosclerosis prediction is presented that is able to obtain and learn automatically knowledge from each patient's clinical data. Therefore, we used the various ML classifiers for the proposed medical diagnosis support system for atherosclerosis. Two supervised ML algorithms (Artificial Neural Network and Adaptive Boosting) were used in order to compare which one is more efficient for atherosclerosis diagnosis. Thus, this work is accomplished using databases collected from the UCI repository (Cleveland, Hungarian) and Sani Z-Alizadeh dataset. The performance metrics were computed utilizing Recall, Accuracy and Precision. Furthermore and F1 score measures were also calculated to greatly increase the proposed system performance. Consequently, the proposed model can be used to support healthcare and facilitate large-scale clinical diagnostic of atherosclerosis diseases." @default.
- W3088424894 created "2020-10-01" @default.
- W3088424894 creator A5023479813 @default.
- W3088424894 creator A5028393414 @default.
- W3088424894 creator A5031916963 @default.
- W3088424894 creator A5032129576 @default.
- W3088424894 creator A5056367589 @default.
- W3088424894 creator A5085438363 @default.
- W3088424894 date "2020-09-01" @default.
- W3088424894 modified "2023-10-18" @default.
- W3088424894 title "Prediction of Patients with Heart Disease using Artificial Neural Network and Adaptive Boosting techniques" @default.
- W3088424894 cites W1545647341 @default.
- W3088424894 cites W1850308234 @default.
- W3088424894 cites W1974431624 @default.
- W3088424894 cites W1989164753 @default.
- W3088424894 cites W2033896075 @default.
- W3088424894 cites W2042937001 @default.
- W3088424894 cites W2062302861 @default.
- W3088424894 cites W2106887613 @default.
- W3088424894 cites W2250033699 @default.
- W3088424894 cites W2579725890 @default.
- W3088424894 cites W2765435434 @default.
- W3088424894 cites W2782054502 @default.
- W3088424894 cites W2803098482 @default.
- W3088424894 cites W2805633583 @default.
- W3088424894 cites W2910181325 @default.
- W3088424894 cites W2948365897 @default.
- W3088424894 cites W2963565281 @default.
- W3088424894 cites W3006340151 @default.
- W3088424894 cites W3007370932 @default.
- W3088424894 cites W3024724345 @default.
- W3088424894 cites W3025325803 @default.
- W3088424894 cites W3033103554 @default.
- W3088424894 doi "https://doi.org/10.1109/commnet49926.2020.9199620" @default.
- W3088424894 hasPublicationYear "2020" @default.
- W3088424894 type Work @default.
- W3088424894 sameAs 3088424894 @default.
- W3088424894 citedByCount "12" @default.
- W3088424894 countsByYear W30884248942020 @default.
- W3088424894 countsByYear W30884248942021 @default.
- W3088424894 countsByYear W30884248942022 @default.
- W3088424894 countsByYear W30884248942023 @default.
- W3088424894 crossrefType "proceedings-article" @default.
- W3088424894 hasAuthorship W3088424894A5023479813 @default.
- W3088424894 hasAuthorship W3088424894A5028393414 @default.
- W3088424894 hasAuthorship W3088424894A5031916963 @default.
- W3088424894 hasAuthorship W3088424894A5032129576 @default.
- W3088424894 hasAuthorship W3088424894A5056367589 @default.
- W3088424894 hasAuthorship W3088424894A5085438363 @default.
- W3088424894 hasConcept C107327155 @default.
- W3088424894 hasConcept C119857082 @default.
- W3088424894 hasConcept C127413603 @default.
- W3088424894 hasConcept C154945302 @default.
- W3088424894 hasConcept C194789388 @default.
- W3088424894 hasConcept C199639397 @default.
- W3088424894 hasConcept C41008148 @default.
- W3088424894 hasConcept C46686674 @default.
- W3088424894 hasConcept C50644808 @default.
- W3088424894 hasConcept C63527458 @default.
- W3088424894 hasConceptScore W3088424894C107327155 @default.
- W3088424894 hasConceptScore W3088424894C119857082 @default.
- W3088424894 hasConceptScore W3088424894C127413603 @default.
- W3088424894 hasConceptScore W3088424894C154945302 @default.
- W3088424894 hasConceptScore W3088424894C194789388 @default.
- W3088424894 hasConceptScore W3088424894C199639397 @default.
- W3088424894 hasConceptScore W3088424894C41008148 @default.
- W3088424894 hasConceptScore W3088424894C46686674 @default.
- W3088424894 hasConceptScore W3088424894C50644808 @default.
- W3088424894 hasConceptScore W3088424894C63527458 @default.
- W3088424894 hasLocation W30884248941 @default.
- W3088424894 hasOpenAccess W3088424894 @default.
- W3088424894 hasPrimaryLocation W30884248941 @default.
- W3088424894 hasRelatedWork W1996541855 @default.
- W3088424894 hasRelatedWork W2406342162 @default.
- W3088424894 hasRelatedWork W3151529617 @default.
- W3088424894 hasRelatedWork W3159988495 @default.
- W3088424894 hasRelatedWork W3195168932 @default.
- W3088424894 hasRelatedWork W3200719183 @default.
- W3088424894 hasRelatedWork W4292969247 @default.
- W3088424894 hasRelatedWork W4293069612 @default.
- W3088424894 hasRelatedWork W4313488044 @default.
- W3088424894 hasRelatedWork W1629725936 @default.
- W3088424894 isParatext "false" @default.
- W3088424894 isRetracted "false" @default.
- W3088424894 magId "3088424894" @default.
- W3088424894 workType "article" @default.