Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088462511> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3088462511 endingPage "447" @default.
- W3088462511 startingPage "435" @default.
- W3088462511 abstract "OBJECTIVE: With Sina Weibo data as the background, support vector machine (SVM) and k-nearest neighbor (KNN) method are used to predict and analyze the user’s micro-blog emotion and related behavior in social network, hoping to obtain rich potential business value. METHODS: First, the API interface of Sina Weibo is utilized to obtain the information of users in Sina Weibo; then, the Excel software is utilized to sort and analyze the extracted data to extract the features of micro- blogs posted by users. Second, SVM and KNN algorithms are utilized to calculate the weighted average and propose a hybrid multi-classifier-based Mixed Classifier Emotion Prediction Model (MCEPM). Finally, through the evaluation criteria, including precision (P), recall rate (R), and harmonic average (F1), the specific experimental results of SVM and KNN weight coefficients are compared with the prediction results of MCEPM. RESULTS: The prediction effect of MCEPM is associated with the weight coefficients of SVM and KNN. If the weight coefficients of SVM and KNN are 0.6 and 0.4, the prediction effect of MCEPM will be optimal. Comprehensive analysis shows that the MCEPM model can balance the prediction results of the positive and negative samples of the two classifiers. CONCLUSION: MCEPM model is superior to other algorithms in micro-blog emotion prediction, which can help enterprises analyze users’ product inclination and provide accurate customer service requirements for enterprises." @default.
- W3088462511 created "2020-10-01" @default.
- W3088462511 creator A5009797634 @default.
- W3088462511 creator A5012975538 @default.
- W3088462511 creator A5031289854 @default.
- W3088462511 creator A5075405190 @default.
- W3088462511 creator A5089766116 @default.
- W3088462511 date "2021-05-06" @default.
- W3088462511 modified "2023-09-25" @default.
- W3088462511 title "Data mining and social networks processing method based on support vector machine and k-nearest neighbor" @default.
- W3088462511 cites W2145149294 @default.
- W3088462511 cites W2149711657 @default.
- W3088462511 cites W2154862285 @default.
- W3088462511 cites W2239756815 @default.
- W3088462511 cites W2288739150 @default.
- W3088462511 cites W2752778006 @default.
- W3088462511 cites W2909149343 @default.
- W3088462511 cites W2912217870 @default.
- W3088462511 cites W2947431935 @default.
- W3088462511 cites W2995518851 @default.
- W3088462511 doi "https://doi.org/10.3233/jcm-204613" @default.
- W3088462511 hasPublicationYear "2021" @default.
- W3088462511 type Work @default.
- W3088462511 sameAs 3088462511 @default.
- W3088462511 citedByCount "1" @default.
- W3088462511 countsByYear W30884625112023 @default.
- W3088462511 crossrefType "journal-article" @default.
- W3088462511 hasAuthorship W3088462511A5009797634 @default.
- W3088462511 hasAuthorship W3088462511A5012975538 @default.
- W3088462511 hasAuthorship W3088462511A5031289854 @default.
- W3088462511 hasAuthorship W3088462511A5075405190 @default.
- W3088462511 hasAuthorship W3088462511A5089766116 @default.
- W3088462511 hasConcept C113238511 @default.
- W3088462511 hasConcept C119857082 @default.
- W3088462511 hasConcept C12267149 @default.
- W3088462511 hasConcept C124101348 @default.
- W3088462511 hasConcept C153180895 @default.
- W3088462511 hasConcept C154945302 @default.
- W3088462511 hasConcept C41008148 @default.
- W3088462511 hasConcept C77088390 @default.
- W3088462511 hasConcept C88548561 @default.
- W3088462511 hasConcept C95623464 @default.
- W3088462511 hasConceptScore W3088462511C113238511 @default.
- W3088462511 hasConceptScore W3088462511C119857082 @default.
- W3088462511 hasConceptScore W3088462511C12267149 @default.
- W3088462511 hasConceptScore W3088462511C124101348 @default.
- W3088462511 hasConceptScore W3088462511C153180895 @default.
- W3088462511 hasConceptScore W3088462511C154945302 @default.
- W3088462511 hasConceptScore W3088462511C41008148 @default.
- W3088462511 hasConceptScore W3088462511C77088390 @default.
- W3088462511 hasConceptScore W3088462511C88548561 @default.
- W3088462511 hasConceptScore W3088462511C95623464 @default.
- W3088462511 hasIssue "2" @default.
- W3088462511 hasLocation W30884625111 @default.
- W3088462511 hasOpenAccess W3088462511 @default.
- W3088462511 hasPrimaryLocation W30884625111 @default.
- W3088462511 hasRelatedWork W2041636156 @default.
- W3088462511 hasRelatedWork W2120008580 @default.
- W3088462511 hasRelatedWork W2126100045 @default.
- W3088462511 hasRelatedWork W2160451891 @default.
- W3088462511 hasRelatedWork W2340694410 @default.
- W3088462511 hasRelatedWork W2378630083 @default.
- W3088462511 hasRelatedWork W3134973506 @default.
- W3088462511 hasRelatedWork W3200612453 @default.
- W3088462511 hasRelatedWork W4285285372 @default.
- W3088462511 hasRelatedWork W4947539 @default.
- W3088462511 hasVolume "21" @default.
- W3088462511 isParatext "false" @default.
- W3088462511 isRetracted "false" @default.
- W3088462511 magId "3088462511" @default.
- W3088462511 workType "article" @default.