Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088495551> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3088495551 abstract "Driver distraction is one of the leading causes of fatal car accidents in the U.S. Analyzing driver behavior using machine learning and deep learning models is an emerging solution to detect abnormal behavior and alarm the driver. Models with memory such as LSTM networks outperform memoryless models in car safety applications since driving is a continuous task and considering information in the sequence of driving data can increase the model’s performance. In this work, we used time-sequenced driving data that we collected in eight driving contexts to measure the driver distraction. Our model is also capable of detecting the type of behavior that caused distraction. We used the driver interaction with the car infotainment system as the distracting activity. A multilayer neural network (MLP) was used as the baseline and two types of LSTM networks including the LSTM model with attention network and the encoder–decoder model with attention were built and trained to analyze the effect of memory and attention on the computational expense and performance of the model. We compare the performance of these two complex networks to that of the MLP in estimating driver behavior. We show that our encoder–decoder with attention model outperforms the LSTM attention while using LSTM networks with attention enhanced training process of the MLP network." @default.
- W3088495551 created "2020-10-01" @default.
- W3088495551 creator A5013518871 @default.
- W3088495551 creator A5080709338 @default.
- W3088495551 date "2020-09-25" @default.
- W3088495551 modified "2023-10-16" @default.
- W3088495551 title "Training Deep Learning Sequence Models to Understand Driver Behavior" @default.
- W3088495551 cites W2068419217 @default.
- W3088495551 cites W2076063813 @default.
- W3088495551 cites W2088849001 @default.
- W3088495551 cites W2105834663 @default.
- W3088495551 cites W2109797278 @default.
- W3088495551 cites W2139367509 @default.
- W3088495551 cites W2142595014 @default.
- W3088495551 cites W2166880842 @default.
- W3088495551 cites W2470673105 @default.
- W3088495551 cites W2489292218 @default.
- W3088495551 cites W2513263213 @default.
- W3088495551 cites W2519106163 @default.
- W3088495551 cites W2576845151 @default.
- W3088495551 cites W2617632090 @default.
- W3088495551 cites W2783437385 @default.
- W3088495551 cites W2791746233 @default.
- W3088495551 cites W2793356611 @default.
- W3088495551 cites W2809949482 @default.
- W3088495551 cites W2839695880 @default.
- W3088495551 cites W2904352776 @default.
- W3088495551 cites W2919287442 @default.
- W3088495551 cites W2953798723 @default.
- W3088495551 cites W2969839024 @default.
- W3088495551 cites W2997277218 @default.
- W3088495551 cites W4243034875 @default.
- W3088495551 doi "https://doi.org/10.1007/978-981-15-6759-9_6" @default.
- W3088495551 hasPublicationYear "2020" @default.
- W3088495551 type Work @default.
- W3088495551 sameAs 3088495551 @default.
- W3088495551 citedByCount "0" @default.
- W3088495551 crossrefType "book-chapter" @default.
- W3088495551 hasAuthorship W3088495551A5013518871 @default.
- W3088495551 hasAuthorship W3088495551A5080709338 @default.
- W3088495551 hasConcept C108583219 @default.
- W3088495551 hasConcept C111919701 @default.
- W3088495551 hasConcept C118505674 @default.
- W3088495551 hasConcept C119857082 @default.
- W3088495551 hasConcept C127413603 @default.
- W3088495551 hasConcept C146978453 @default.
- W3088495551 hasConcept C154945302 @default.
- W3088495551 hasConcept C169760540 @default.
- W3088495551 hasConcept C201995342 @default.
- W3088495551 hasConcept C2776378700 @default.
- W3088495551 hasConcept C2778112365 @default.
- W3088495551 hasConcept C2779119184 @default.
- W3088495551 hasConcept C2780451532 @default.
- W3088495551 hasConcept C41008148 @default.
- W3088495551 hasConcept C50644808 @default.
- W3088495551 hasConcept C54355233 @default.
- W3088495551 hasConcept C86803240 @default.
- W3088495551 hasConcept C98045186 @default.
- W3088495551 hasConceptScore W3088495551C108583219 @default.
- W3088495551 hasConceptScore W3088495551C111919701 @default.
- W3088495551 hasConceptScore W3088495551C118505674 @default.
- W3088495551 hasConceptScore W3088495551C119857082 @default.
- W3088495551 hasConceptScore W3088495551C127413603 @default.
- W3088495551 hasConceptScore W3088495551C146978453 @default.
- W3088495551 hasConceptScore W3088495551C154945302 @default.
- W3088495551 hasConceptScore W3088495551C169760540 @default.
- W3088495551 hasConceptScore W3088495551C201995342 @default.
- W3088495551 hasConceptScore W3088495551C2776378700 @default.
- W3088495551 hasConceptScore W3088495551C2778112365 @default.
- W3088495551 hasConceptScore W3088495551C2779119184 @default.
- W3088495551 hasConceptScore W3088495551C2780451532 @default.
- W3088495551 hasConceptScore W3088495551C41008148 @default.
- W3088495551 hasConceptScore W3088495551C50644808 @default.
- W3088495551 hasConceptScore W3088495551C54355233 @default.
- W3088495551 hasConceptScore W3088495551C86803240 @default.
- W3088495551 hasConceptScore W3088495551C98045186 @default.
- W3088495551 hasLocation W30884955511 @default.
- W3088495551 hasOpenAccess W3088495551 @default.
- W3088495551 hasPrimaryLocation W30884955511 @default.
- W3088495551 hasRelatedWork W12582432 @default.
- W3088495551 hasRelatedWork W13678974 @default.
- W3088495551 hasRelatedWork W2235786 @default.
- W3088495551 hasRelatedWork W2683128 @default.
- W3088495551 hasRelatedWork W5835750 @default.
- W3088495551 hasRelatedWork W6630852 @default.
- W3088495551 hasRelatedWork W8021486 @default.
- W3088495551 hasRelatedWork W868042 @default.
- W3088495551 hasRelatedWork W9333608 @default.
- W3088495551 hasRelatedWork W9948832 @default.
- W3088495551 isParatext "false" @default.
- W3088495551 isRetracted "false" @default.
- W3088495551 magId "3088495551" @default.
- W3088495551 workType "book-chapter" @default.