Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088522034> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3088522034 endingPage "113" @default.
- W3088522034 startingPage "105" @default.
- W3088522034 abstract "The asymmetry in the flow of events that is expressed by the phrase ‘time’s arrow’ traces back to the second law of thermodynamics. In the microscopic regime, fluctuations prevent us from discerning the direction of time’s arrow with certainty. Here, we find that a machine learning algorithm that is trained to infer the direction of time’s arrow identifies entropy production as the relevant physical quantity in its decision-making process. Effectively, the algorithm rediscovers the fluctuation theorem as the underlying thermodynamic principle. Our results indicate that machine learning techniques can be used to study systems that are out of equilibrium, and ultimately to answer open questions and uncover physical principles in thermodynamics. The phrase ‘arrow of time’ refers to the asymmetry in the flow of events. A machine learning algorithm trained to infer its direction identifies entropy production as the relevant underlying physical principle in the decision-making process." @default.
- W3088522034 created "2020-10-01" @default.
- W3088522034 creator A5008265631 @default.
- W3088522034 creator A5021706997 @default.
- W3088522034 creator A5036091404 @default.
- W3088522034 date "2020-09-21" @default.
- W3088522034 modified "2023-09-29" @default.
- W3088522034 title "Machine learning the thermodynamic arrow of time" @default.
- W3088522034 cites W1482044830 @default.
- W3088522034 cites W1568622093 @default.
- W3088522034 cites W1970690135 @default.
- W3088522034 cites W1979769287 @default.
- W3088522034 cites W1992161108 @default.
- W3088522034 cites W1994516937 @default.
- W3088522034 cites W2021820673 @default.
- W3088522034 cites W2040008731 @default.
- W3088522034 cites W2102277728 @default.
- W3088522034 cites W2102375526 @default.
- W3088522034 cites W2106444345 @default.
- W3088522034 cites W2114996241 @default.
- W3088522034 cites W2128706048 @default.
- W3088522034 cites W2149801992 @default.
- W3088522034 cites W2238417772 @default.
- W3088522034 cites W2331130507 @default.
- W3088522034 cites W2337082154 @default.
- W3088522034 cites W2418689459 @default.
- W3088522034 cites W2494371936 @default.
- W3088522034 cites W2525748878 @default.
- W3088522034 cites W2531147647 @default.
- W3088522034 cites W2594041373 @default.
- W3088522034 cites W2606470147 @default.
- W3088522034 cites W2608461474 @default.
- W3088522034 cites W2615003501 @default.
- W3088522034 cites W2748390680 @default.
- W3088522034 cites W2765597272 @default.
- W3088522034 cites W2769287225 @default.
- W3088522034 cites W2774682142 @default.
- W3088522034 cites W2799087757 @default.
- W3088522034 cites W2799261665 @default.
- W3088522034 cites W2884775584 @default.
- W3088522034 cites W2913340405 @default.
- W3088522034 cites W2923537029 @default.
- W3088522034 cites W2955370701 @default.
- W3088522034 cites W2999044305 @default.
- W3088522034 cites W3123682764 @default.
- W3088522034 doi "https://doi.org/10.1038/s41567-020-1018-2" @default.
- W3088522034 hasPublicationYear "2020" @default.
- W3088522034 type Work @default.
- W3088522034 sameAs 3088522034 @default.
- W3088522034 citedByCount "50" @default.
- W3088522034 countsByYear W30885220342020 @default.
- W3088522034 countsByYear W30885220342021 @default.
- W3088522034 countsByYear W30885220342022 @default.
- W3088522034 countsByYear W30885220342023 @default.
- W3088522034 crossrefType "journal-article" @default.
- W3088522034 hasAuthorship W3088522034A5008265631 @default.
- W3088522034 hasAuthorship W3088522034A5021706997 @default.
- W3088522034 hasAuthorship W3088522034A5036091404 @default.
- W3088522034 hasBestOaLocation W30885220342 @default.
- W3088522034 hasConcept C121332964 @default.
- W3088522034 hasConcept C121864883 @default.
- W3088522034 hasConcept C14828074 @default.
- W3088522034 hasConcept C199360897 @default.
- W3088522034 hasConcept C2780339515 @default.
- W3088522034 hasConcept C33332235 @default.
- W3088522034 hasConcept C41008148 @default.
- W3088522034 hasConcept C62520636 @default.
- W3088522034 hasConcept C84114770 @default.
- W3088522034 hasConceptScore W3088522034C121332964 @default.
- W3088522034 hasConceptScore W3088522034C121864883 @default.
- W3088522034 hasConceptScore W3088522034C14828074 @default.
- W3088522034 hasConceptScore W3088522034C199360897 @default.
- W3088522034 hasConceptScore W3088522034C2780339515 @default.
- W3088522034 hasConceptScore W3088522034C33332235 @default.
- W3088522034 hasConceptScore W3088522034C41008148 @default.
- W3088522034 hasConceptScore W3088522034C62520636 @default.
- W3088522034 hasConceptScore W3088522034C84114770 @default.
- W3088522034 hasFunder F4320306076 @default.
- W3088522034 hasIssue "1" @default.
- W3088522034 hasLocation W30885220341 @default.
- W3088522034 hasLocation W30885220342 @default.
- W3088522034 hasOpenAccess W3088522034 @default.
- W3088522034 hasPrimaryLocation W30885220341 @default.
- W3088522034 hasRelatedWork W1659492874 @default.
- W3088522034 hasRelatedWork W2004393494 @default.
- W3088522034 hasRelatedWork W2015349253 @default.
- W3088522034 hasRelatedWork W2081865797 @default.
- W3088522034 hasRelatedWork W2389979845 @default.
- W3088522034 hasRelatedWork W2950040623 @default.
- W3088522034 hasRelatedWork W3172401033 @default.
- W3088522034 hasRelatedWork W4299724048 @default.
- W3088522034 hasRelatedWork W4301440002 @default.
- W3088522034 hasRelatedWork W4307072959 @default.
- W3088522034 hasVolume "17" @default.
- W3088522034 isParatext "false" @default.
- W3088522034 isRetracted "false" @default.
- W3088522034 magId "3088522034" @default.
- W3088522034 workType "article" @default.