Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088604489> ?p ?o ?g. }
- W3088604489 endingPage "3119" @default.
- W3088604489 startingPage "3119" @default.
- W3088604489 abstract "Although efforts and progress have been made in crop classification using optical remote sensing images, it is still necessary to make full use of the high spatial, temporal, and spectral resolutions of remote sensing images. However, with the increasing volume of remote sensing data, a key emerging issue in the field of crop classification is how to find useful information from massive data to balance classification accuracy and processing time. To address this challenge, we developed a novel crop classification method, combining optimal feature selection (OFSM) with hybrid convolutional neural network-random forest (CNN-RF) networks for multi-temporal optical remote sensing images. This research used 234 features including spectral, segmentation, color, and texture features from three scenes of Sentinel-2 images to identify crop types in the Jilin province of northeast China. To effectively extract the effective features of remote sensing data with lower time requirements, the use of OFSM was proposed with the results compared with two traditional feature selection methods (TFSM): random forest feature importance selection (RF-FI) and random forest recursive feature elimination (RF-RFE). Although the time required for OFSM was 26.05 s, which was between RF-FI with 1.97 s and RF-RFE with 132.54 s, OFSM outperformed RF-FI and RF-RFE in terms of the overall accuracy (OA) of crop classification by 4% and 0.3%, respectively. On the basis of obtaining effective feature information, to further improve the accuracy of crop classification we designed two hybrid CNN-RF networks to leverage the advantages of one-dimensional convolution (Conv1D) and Visual Geometry Group (VGG) with random forest (RF), respectively. Based on the selected optimal features using OFSM, four networks were tested for comparison: Conv1D-RF, VGG-RF, Conv1D, and VGG. Conv1D-RF achieved the highest OA at 94.27% as compared with VGG-RF (93.23%), Conv1D (92.59%), and VGG (91.89%), indicating that the Conv1D-RF method with optimal feature input provides an effective and efficient method of time series representation for multi-temporal crop-type classification." @default.
- W3088604489 created "2020-10-01" @default.
- W3088604489 creator A5024110002 @default.
- W3088604489 creator A5036910081 @default.
- W3088604489 creator A5061555565 @default.
- W3088604489 creator A5069542602 @default.
- W3088604489 creator A5069714324 @default.
- W3088604489 date "2020-09-23" @default.
- W3088604489 modified "2023-10-18" @default.
- W3088604489 title "Crop Classification Method Based on Optimal Feature Selection and Hybrid CNN-RF Networks for Multi-Temporal Remote Sensing Imagery" @default.
- W3088604489 cites W1975030698 @default.
- W3088604489 cites W1981755063 @default.
- W3088604489 cites W1986072339 @default.
- W3088604489 cites W1986738039 @default.
- W3088604489 cites W1998281138 @default.
- W3088604489 cites W1999478155 @default.
- W3088604489 cites W2020089616 @default.
- W3088604489 cites W2026745084 @default.
- W3088604489 cites W2031340414 @default.
- W3088604489 cites W2035549557 @default.
- W3088604489 cites W2036389990 @default.
- W3088604489 cites W2044193427 @default.
- W3088604489 cites W2068094410 @default.
- W3088604489 cites W2092829070 @default.
- W3088604489 cites W2099507093 @default.
- W3088604489 cites W2103699041 @default.
- W3088604489 cites W2112341432 @default.
- W3088604489 cites W2166884684 @default.
- W3088604489 cites W2179290474 @default.
- W3088604489 cites W2273708466 @default.
- W3088604489 cites W2438450043 @default.
- W3088604489 cites W2557117995 @default.
- W3088604489 cites W2574877824 @default.
- W3088604489 cites W2604086375 @default.
- W3088604489 cites W2616755213 @default.
- W3088604489 cites W2620779710 @default.
- W3088604489 cites W2641842219 @default.
- W3088604489 cites W2743680082 @default.
- W3088604489 cites W2765739551 @default.
- W3088604489 cites W2783608381 @default.
- W3088604489 cites W2791592925 @default.
- W3088604489 cites W2883026662 @default.
- W3088604489 cites W2903282641 @default.
- W3088604489 cites W2906424845 @default.
- W3088604489 cites W2911810010 @default.
- W3088604489 cites W2956159545 @default.
- W3088604489 cites W2964338223 @default.
- W3088604489 cites W2995342911 @default.
- W3088604489 cites W2996331621 @default.
- W3088604489 cites W2998127363 @default.
- W3088604489 cites W3003713733 @default.
- W3088604489 cites W3012096460 @default.
- W3088604489 cites W4232332215 @default.
- W3088604489 cites W4361755798 @default.
- W3088604489 cites W561088580 @default.
- W3088604489 doi "https://doi.org/10.3390/rs12193119" @default.
- W3088604489 hasPublicationYear "2020" @default.
- W3088604489 type Work @default.
- W3088604489 sameAs 3088604489 @default.
- W3088604489 citedByCount "43" @default.
- W3088604489 countsByYear W30886044892021 @default.
- W3088604489 countsByYear W30886044892022 @default.
- W3088604489 countsByYear W30886044892023 @default.
- W3088604489 crossrefType "journal-article" @default.
- W3088604489 hasAuthorship W3088604489A5024110002 @default.
- W3088604489 hasAuthorship W3088604489A5036910081 @default.
- W3088604489 hasAuthorship W3088604489A5061555565 @default.
- W3088604489 hasAuthorship W3088604489A5069542602 @default.
- W3088604489 hasAuthorship W3088604489A5069714324 @default.
- W3088604489 hasBestOaLocation W30886044891 @default.
- W3088604489 hasConcept C115961682 @default.
- W3088604489 hasConcept C138885662 @default.
- W3088604489 hasConcept C148483581 @default.
- W3088604489 hasConcept C153083717 @default.
- W3088604489 hasConcept C153180895 @default.
- W3088604489 hasConcept C154945302 @default.
- W3088604489 hasConcept C159078339 @default.
- W3088604489 hasConcept C169258074 @default.
- W3088604489 hasConcept C183365957 @default.
- W3088604489 hasConcept C205649164 @default.
- W3088604489 hasConcept C2776401178 @default.
- W3088604489 hasConcept C41008148 @default.
- W3088604489 hasConcept C41895202 @default.
- W3088604489 hasConcept C62649853 @default.
- W3088604489 hasConcept C75294576 @default.
- W3088604489 hasConcept C81363708 @default.
- W3088604489 hasConceptScore W3088604489C115961682 @default.
- W3088604489 hasConceptScore W3088604489C138885662 @default.
- W3088604489 hasConceptScore W3088604489C148483581 @default.
- W3088604489 hasConceptScore W3088604489C153083717 @default.
- W3088604489 hasConceptScore W3088604489C153180895 @default.
- W3088604489 hasConceptScore W3088604489C154945302 @default.
- W3088604489 hasConceptScore W3088604489C159078339 @default.
- W3088604489 hasConceptScore W3088604489C169258074 @default.
- W3088604489 hasConceptScore W3088604489C183365957 @default.
- W3088604489 hasConceptScore W3088604489C205649164 @default.
- W3088604489 hasConceptScore W3088604489C2776401178 @default.
- W3088604489 hasConceptScore W3088604489C41008148 @default.