Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088621050> ?p ?o ?g. }
- W3088621050 abstract "Conventional concrete is the most common material used in civil construction, and its behavior is highly nonlinear, mainly because of its heterogeneous characteristics. Compressive strength is one of the most critical parameters when designing concrete structures, and it is widely used by engineers. This parameter is usually determined through expensive laboratory tests, causing a loss of resources, materials, and time. However, artificial intelligence and its numerous applications are examples of new technologies that have been used successfully in scientific applications. Artificial neural network (ANN) and support vector machine (SVM) models are generally used to resolve engineering problems. In this work, three models are designed, implemented, and tested to determine the compressive strength of concrete: random forest, SVM, and ANNs. Pre-processing data, statistical methods, and data visualization techniques are also employed to gain a better understanding of the database. Finally, the results obtained show high efficiency and are compared with other works, which also captured the compressive strength of the concrete." @default.
- W3088621050 created "2020-10-01" @default.
- W3088621050 creator A5000021169 @default.
- W3088621050 creator A5023185757 @default.
- W3088621050 creator A5071172264 @default.
- W3088621050 date "2020-01-01" @default.
- W3088621050 modified "2023-10-04" @default.
- W3088621050 title "Machine learning techniques to predict the compressive strength of concrete" @default.
- W3088621050 cites W1488328403 @default.
- W3088621050 cites W1545333017 @default.
- W3088621050 cites W1560724230 @default.
- W3088621050 cites W1596717185 @default.
- W3088621050 cites W1728842521 @default.
- W3088621050 cites W1982366717 @default.
- W3088621050 cites W1994807229 @default.
- W3088621050 cites W2001408432 @default.
- W3088621050 cites W2001705326 @default.
- W3088621050 cites W2002016471 @default.
- W3088621050 cites W2035864983 @default.
- W3088621050 cites W2038808304 @default.
- W3088621050 cites W2063629125 @default.
- W3088621050 cites W2083947605 @default.
- W3088621050 cites W2097137621 @default.
- W3088621050 cites W2113242816 @default.
- W3088621050 cites W2137226992 @default.
- W3088621050 cites W2155529673 @default.
- W3088621050 cites W2155632266 @default.
- W3088621050 cites W2167849100 @default.
- W3088621050 cites W2176412452 @default.
- W3088621050 cites W2297655903 @default.
- W3088621050 cites W2344114926 @default.
- W3088621050 cites W2544822491 @default.
- W3088621050 cites W2624413595 @default.
- W3088621050 cites W2780804720 @default.
- W3088621050 cites W2792643794 @default.
- W3088621050 cites W2794137295 @default.
- W3088621050 cites W2893769615 @default.
- W3088621050 cites W2907742249 @default.
- W3088621050 cites W2976353133 @default.
- W3088621050 cites W2993243199 @default.
- W3088621050 cites W2995567449 @default.
- W3088621050 cites W2997525417 @default.
- W3088621050 cites W3009211770 @default.
- W3088621050 cites W3048264598 @default.
- W3088621050 doi "https://doi.org/10.23967/j.rimni.2020.09.008" @default.
- W3088621050 hasPublicationYear "2020" @default.
- W3088621050 type Work @default.
- W3088621050 sameAs 3088621050 @default.
- W3088621050 citedByCount "14" @default.
- W3088621050 countsByYear W30886210502021 @default.
- W3088621050 countsByYear W30886210502022 @default.
- W3088621050 countsByYear W30886210502023 @default.
- W3088621050 crossrefType "journal-article" @default.
- W3088621050 hasAuthorship W3088621050A5000021169 @default.
- W3088621050 hasAuthorship W3088621050A5023185757 @default.
- W3088621050 hasAuthorship W3088621050A5071172264 @default.
- W3088621050 hasBestOaLocation W30886210501 @default.
- W3088621050 hasConcept C119857082 @default.
- W3088621050 hasConcept C121332964 @default.
- W3088621050 hasConcept C12267149 @default.
- W3088621050 hasConcept C124101348 @default.
- W3088621050 hasConcept C154945302 @default.
- W3088621050 hasConcept C158622935 @default.
- W3088621050 hasConcept C159985019 @default.
- W3088621050 hasConcept C169258074 @default.
- W3088621050 hasConcept C192562407 @default.
- W3088621050 hasConcept C30407753 @default.
- W3088621050 hasConcept C41008148 @default.
- W3088621050 hasConcept C50644808 @default.
- W3088621050 hasConcept C62520636 @default.
- W3088621050 hasConceptScore W3088621050C119857082 @default.
- W3088621050 hasConceptScore W3088621050C121332964 @default.
- W3088621050 hasConceptScore W3088621050C12267149 @default.
- W3088621050 hasConceptScore W3088621050C124101348 @default.
- W3088621050 hasConceptScore W3088621050C154945302 @default.
- W3088621050 hasConceptScore W3088621050C158622935 @default.
- W3088621050 hasConceptScore W3088621050C159985019 @default.
- W3088621050 hasConceptScore W3088621050C169258074 @default.
- W3088621050 hasConceptScore W3088621050C192562407 @default.
- W3088621050 hasConceptScore W3088621050C30407753 @default.
- W3088621050 hasConceptScore W3088621050C41008148 @default.
- W3088621050 hasConceptScore W3088621050C50644808 @default.
- W3088621050 hasConceptScore W3088621050C62520636 @default.
- W3088621050 hasLocation W30886210501 @default.
- W3088621050 hasOpenAccess W3088621050 @default.
- W3088621050 hasPrimaryLocation W30886210501 @default.
- W3088621050 hasRelatedWork W1996541855 @default.
- W3088621050 hasRelatedWork W2985924212 @default.
- W3088621050 hasRelatedWork W3195168932 @default.
- W3088621050 hasRelatedWork W3195610867 @default.
- W3088621050 hasRelatedWork W4308191010 @default.
- W3088621050 hasRelatedWork W4321636153 @default.
- W3088621050 hasRelatedWork W4323021782 @default.
- W3088621050 hasRelatedWork W4327511089 @default.
- W3088621050 hasRelatedWork W4377964522 @default.
- W3088621050 hasRelatedWork W4381414210 @default.
- W3088621050 hasVolume "36" @default.
- W3088621050 isParatext "false" @default.
- W3088621050 isRetracted "false" @default.
- W3088621050 magId "3088621050" @default.