Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088651870> ?p ?o ?g. }
- W3088651870 endingPage "1552" @default.
- W3088651870 startingPage "1552" @default.
- W3088651870 abstract "The human gait pattern is an emerging biometric trait for user identification of smart devices. However, one of the challenges in this biometric domain is the gait pattern change caused by footwear, especially if the users are wearing high heels (HH). Wearing HH puts extra stress and pressure on various parts of the human body and it alters the wearer’s common gait pattern, which may cause difficulties in gait recognition. In this paper, we propose the Sensing-HH, a deep hybrid attention model for recognizing the subject’s shoes, flat or different types of HH, using smartphone’s motion sensors. In this model, two streams of convolutional and bidirectional long short-term memory (LSTM) networks are designed as the backbone, which extract the hierarchical spatial and temporal representations of accelerometer and gyroscope individually. We also introduce a spatio attention mechanism into the stacked convolutional layers to scan the crucial structure of the data. This mechanism enables the hybrid neural networks to capture extra information from the signal and thus it is able to significantly improve the discriminative power of the classifier for the footwear recognition task. To evaluate Sensing-HH, we built a dataset with 35 young females, each of whom walked for 4 min wearing shoes with varied heights of the heels. We conducted extensive experiments and the results demonstrated that the Sensing-HH outperformed the baseline models on leave-one-subject-out cross-validation (LOSO-CV). The Sensing-HH achieved the best Fm score, which was 0.827 when the smartphone was attached to the waist. This outperformed all the baseline methods at least by more than 14%. Meanwhile, the F1 Score of the Ultra HH was as high as 0.91. The results suggest the proposed model has made the footwear recognition more efficient and automated. We hope the findings from this study paves the way for a more sophisticated application using data from motion sensors, as well as lead to a path to a more robust biometric system based on gait pattern." @default.
- W3088651870 created "2020-10-01" @default.
- W3088651870 creator A5004676356 @default.
- W3088651870 creator A5017295689 @default.
- W3088651870 creator A5074706280 @default.
- W3088651870 date "2020-09-22" @default.
- W3088651870 modified "2023-10-16" @default.
- W3088651870 title "Sensing-HH: A Deep Hybrid Attention Model for Footwear Recognition" @default.
- W3088651870 cites W1840637580 @default.
- W3088651870 cites W1995562189 @default.
- W3088651870 cites W2002204150 @default.
- W3088651870 cites W2040378481 @default.
- W3088651870 cites W2041759680 @default.
- W3088651870 cites W2101901432 @default.
- W3088651870 cites W2102895608 @default.
- W3088651870 cites W2114095514 @default.
- W3088651870 cites W2133990480 @default.
- W3088651870 cites W2140197488 @default.
- W3088651870 cites W2151458682 @default.
- W3088651870 cites W2153542846 @default.
- W3088651870 cites W2163049891 @default.
- W3088651870 cites W2166054520 @default.
- W3088651870 cites W2211192759 @default.
- W3088651870 cites W2409587536 @default.
- W3088651870 cites W2592878160 @default.
- W3088651870 cites W2595328592 @default.
- W3088651870 cites W2604630936 @default.
- W3088651870 cites W2736191430 @default.
- W3088651870 cites W2765268259 @default.
- W3088651870 cites W2803242616 @default.
- W3088651870 cites W2803679146 @default.
- W3088651870 cites W2803731655 @default.
- W3088651870 cites W2803920401 @default.
- W3088651870 cites W2889505988 @default.
- W3088651870 cites W2893483035 @default.
- W3088651870 cites W2913966298 @default.
- W3088651870 cites W2923336951 @default.
- W3088651870 cites W2971612532 @default.
- W3088651870 cites W2987119394 @default.
- W3088651870 cites W3007332931 @default.
- W3088651870 cites W3014370958 @default.
- W3088651870 doi "https://doi.org/10.3390/electronics9091552" @default.
- W3088651870 hasPublicationYear "2020" @default.
- W3088651870 type Work @default.
- W3088651870 sameAs 3088651870 @default.
- W3088651870 citedByCount "0" @default.
- W3088651870 crossrefType "journal-article" @default.
- W3088651870 hasAuthorship W3088651870A5004676356 @default.
- W3088651870 hasAuthorship W3088651870A5017295689 @default.
- W3088651870 hasAuthorship W3088651870A5074706280 @default.
- W3088651870 hasBestOaLocation W30886518701 @default.
- W3088651870 hasConcept C108583219 @default.
- W3088651870 hasConcept C111919701 @default.
- W3088651870 hasConcept C151800584 @default.
- W3088651870 hasConcept C153180895 @default.
- W3088651870 hasConcept C154945302 @default.
- W3088651870 hasConcept C184297639 @default.
- W3088651870 hasConcept C31972630 @default.
- W3088651870 hasConcept C41008148 @default.
- W3088651870 hasConcept C71924100 @default.
- W3088651870 hasConcept C81363708 @default.
- W3088651870 hasConcept C89805583 @default.
- W3088651870 hasConcept C95623464 @default.
- W3088651870 hasConcept C97931131 @default.
- W3088651870 hasConcept C99508421 @default.
- W3088651870 hasConceptScore W3088651870C108583219 @default.
- W3088651870 hasConceptScore W3088651870C111919701 @default.
- W3088651870 hasConceptScore W3088651870C151800584 @default.
- W3088651870 hasConceptScore W3088651870C153180895 @default.
- W3088651870 hasConceptScore W3088651870C154945302 @default.
- W3088651870 hasConceptScore W3088651870C184297639 @default.
- W3088651870 hasConceptScore W3088651870C31972630 @default.
- W3088651870 hasConceptScore W3088651870C41008148 @default.
- W3088651870 hasConceptScore W3088651870C71924100 @default.
- W3088651870 hasConceptScore W3088651870C81363708 @default.
- W3088651870 hasConceptScore W3088651870C89805583 @default.
- W3088651870 hasConceptScore W3088651870C95623464 @default.
- W3088651870 hasConceptScore W3088651870C97931131 @default.
- W3088651870 hasConceptScore W3088651870C99508421 @default.
- W3088651870 hasIssue "9" @default.
- W3088651870 hasLocation W30886518701 @default.
- W3088651870 hasLocation W30886518702 @default.
- W3088651870 hasOpenAccess W3088651870 @default.
- W3088651870 hasPrimaryLocation W30886518701 @default.
- W3088651870 hasRelatedWork W2112343299 @default.
- W3088651870 hasRelatedWork W2738221750 @default.
- W3088651870 hasRelatedWork W2905846897 @default.
- W3088651870 hasRelatedWork W2914959431 @default.
- W3088651870 hasRelatedWork W2982947611 @default.
- W3088651870 hasRelatedWork W2986507176 @default.
- W3088651870 hasRelatedWork W3096652307 @default.
- W3088651870 hasRelatedWork W3156786002 @default.
- W3088651870 hasRelatedWork W4319994054 @default.
- W3088651870 hasRelatedWork W564581980 @default.
- W3088651870 hasVolume "9" @default.
- W3088651870 isParatext "false" @default.
- W3088651870 isRetracted "false" @default.
- W3088651870 magId "3088651870" @default.