Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088675522> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3088675522 endingPage "170975" @default.
- W3088675522 startingPage "170967" @default.
- W3088675522 abstract "Excessive time complexity has severely restricted the application of support vector machine (SVM) in large-scale multi-label classification. Thus, this paper proposes an efficient multi-label SVM classification algorithm by combining approximate extreme points method and divide-and-conquer strategy (AEDC-MLSVM). The AEDC-MLSVM classification algorithm firstly uses the approximate extreme points method to obtain the representative set from the multi-label training data set. While persisting almost all the useful information of multi-label training set, representative set can effectively reduce the scale of multi-label training set. Secondly, to acquire an efficient multi-label SVM classification model, the SVM based on the improved divide-and-conquer strategy is trained on the representative set, which will further improve the training speed and classification performance. The improvement is reflected in two aspects. (1) The improved divide-and-conquer strategy is applied to divide the representative set into subsets and this can ensure that each representative subset contains a certain number of positive and negative instances. This will avoid singular problems and overcome computation load imbalance problem. (2) The different error cost (DEC) method is applied to overcome the label imbalance problem. Effective experiments have proved that the training and testing speed of AEDC-MLSVM classification algorithm can be accelerated substantially while ensuring the classification performance." @default.
- W3088675522 created "2020-10-01" @default.
- W3088675522 creator A5032015058 @default.
- W3088675522 creator A5038865167 @default.
- W3088675522 creator A5047839791 @default.
- W3088675522 creator A5073041905 @default.
- W3088675522 creator A5074118615 @default.
- W3088675522 date "2020-01-01" @default.
- W3088675522 modified "2023-09-23" @default.
- W3088675522 title "An Efficient Multi-Label SVM Classification Algorithm by Combining Approximate Extreme Points Method and Divide-and-Conquer Strategy" @default.
- W3088675522 cites W1533320424 @default.
- W3088675522 cites W1753402186 @default.
- W3088675522 cites W1964599475 @default.
- W3088675522 cites W1986159170 @default.
- W3088675522 cites W1997405810 @default.
- W3088675522 cites W1999126347 @default.
- W3088675522 cites W2027266161 @default.
- W3088675522 cites W2029517229 @default.
- W3088675522 cites W2052684427 @default.
- W3088675522 cites W2053463056 @default.
- W3088675522 cites W2085944479 @default.
- W3088675522 cites W2103614420 @default.
- W3088675522 cites W2105867876 @default.
- W3088675522 cites W2114315281 @default.
- W3088675522 cites W2118978333 @default.
- W3088675522 cites W2119466907 @default.
- W3088675522 cites W2153635508 @default.
- W3088675522 cites W2775653686 @default.
- W3088675522 cites W2799567455 @default.
- W3088675522 cites W2808862089 @default.
- W3088675522 cites W2885517796 @default.
- W3088675522 cites W2911914007 @default.
- W3088675522 cites W2940901905 @default.
- W3088675522 cites W2981142240 @default.
- W3088675522 cites W55768394 @default.
- W3088675522 doi "https://doi.org/10.1109/access.2020.3024745" @default.
- W3088675522 hasPublicationYear "2020" @default.
- W3088675522 type Work @default.
- W3088675522 sameAs 3088675522 @default.
- W3088675522 citedByCount "2" @default.
- W3088675522 countsByYear W30886755222022 @default.
- W3088675522 countsByYear W30886755222023 @default.
- W3088675522 crossrefType "journal-article" @default.
- W3088675522 hasAuthorship W3088675522A5032015058 @default.
- W3088675522 hasAuthorship W3088675522A5038865167 @default.
- W3088675522 hasAuthorship W3088675522A5047839791 @default.
- W3088675522 hasAuthorship W3088675522A5073041905 @default.
- W3088675522 hasAuthorship W3088675522A5074118615 @default.
- W3088675522 hasBestOaLocation W30886755221 @default.
- W3088675522 hasConcept C11413529 @default.
- W3088675522 hasConcept C119857082 @default.
- W3088675522 hasConcept C12267149 @default.
- W3088675522 hasConcept C124101348 @default.
- W3088675522 hasConcept C153180895 @default.
- W3088675522 hasConcept C154945302 @default.
- W3088675522 hasConcept C2776482837 @default.
- W3088675522 hasConcept C41008148 @default.
- W3088675522 hasConcept C71559656 @default.
- W3088675522 hasConceptScore W3088675522C11413529 @default.
- W3088675522 hasConceptScore W3088675522C119857082 @default.
- W3088675522 hasConceptScore W3088675522C12267149 @default.
- W3088675522 hasConceptScore W3088675522C124101348 @default.
- W3088675522 hasConceptScore W3088675522C153180895 @default.
- W3088675522 hasConceptScore W3088675522C154945302 @default.
- W3088675522 hasConceptScore W3088675522C2776482837 @default.
- W3088675522 hasConceptScore W3088675522C41008148 @default.
- W3088675522 hasConceptScore W3088675522C71559656 @default.
- W3088675522 hasFunder F4320321001 @default.
- W3088675522 hasLocation W30886755221 @default.
- W3088675522 hasOpenAccess W3088675522 @default.
- W3088675522 hasPrimaryLocation W30886755221 @default.
- W3088675522 hasRelatedWork W2041399278 @default.
- W3088675522 hasRelatedWork W2099369243 @default.
- W3088675522 hasRelatedWork W2120008580 @default.
- W3088675522 hasRelatedWork W2136184105 @default.
- W3088675522 hasRelatedWork W2163073107 @default.
- W3088675522 hasRelatedWork W3194539120 @default.
- W3088675522 hasRelatedWork W4205958290 @default.
- W3088675522 hasRelatedWork W4223656335 @default.
- W3088675522 hasRelatedWork W2187500075 @default.
- W3088675522 hasRelatedWork W2345184372 @default.
- W3088675522 hasVolume "8" @default.
- W3088675522 isParatext "false" @default.
- W3088675522 isRetracted "false" @default.
- W3088675522 magId "3088675522" @default.
- W3088675522 workType "article" @default.