Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088689062> ?p ?o ?g. }
- W3088689062 endingPage "172" @default.
- W3088689062 startingPage "157" @default.
- W3088689062 abstract "Abstract The current biodiversity crisis calls for appropriate methods for assessing biodiversity. In this respect, environmental DNA (eDNA) holds great promise, especially for aquatic ecosystems. While initial eDNA studies assessed biodiversity at single sites, technology now allows analyzing samples from many points simultaneously. However, the selection of these sites has been mostly motivated on an ad‐hoc basis. To this end, hydrology‐based models might offer a unique guidance on where to sample eDNA to most effectively reconstruct spatial patterns of biodiversity. Here, we performed computer simulations to identify best‐practice criteria for the choice of positioning of eDNA sampling sites in river networks. To do so, we combined a hydrology‐based eDNA transport model with a virtual river network reproducing the scaling features of real rivers. In particular, we conducted simulations investigating scenarios of different number and location of eDNA sampling sites in a riverine network, different spatial taxon distributions, and different eDNA measurement errors. We found that, due to hydrological controls, non‐uniform patterns of eDNA concentration arise even if the taxon distribution is uniform and decay is neglected. Best practices for sampling site selection depend on the taxon's spatial distribution: when taxa are concentrated in some hotspots and only few sampling sites can be placed, it is better to preferentially locate them in the downstream part of the catchment; when taxa are more evenly distributed, and/or many sites can be placed, these should be preferentially located upstream. We also found that uncertainties in eDNA concentration estimates do not necessarily hamper model predictions. Knowledge of eDNA decay rates improves model predictions, highlighting the need for empirical estimates of these rates under relevant environmental conditions. Our simulations help define strategies for designing eDNA sampling campaigns in river networks and can guide the sampling effort of field ecologists and environmental authorities." @default.
- W3088689062 created "2020-10-01" @default.
- W3088689062 creator A5053885667 @default.
- W3088689062 creator A5084223484 @default.
- W3088689062 creator A5086337854 @default.
- W3088689062 date "2020-09-20" @default.
- W3088689062 modified "2023-10-18" @default.
- W3088689062 title "How to design optimal eDNA sampling strategies for biomonitoring in river networks" @default.
- W3088689062 cites W1552342091 @default.
- W3088689062 cites W1587869157 @default.
- W3088689062 cites W1815195908 @default.
- W3088689062 cites W1979060637 @default.
- W3088689062 cites W1991921673 @default.
- W3088689062 cites W2015053255 @default.
- W3088689062 cites W2022251739 @default.
- W3088689062 cites W2048500746 @default.
- W3088689062 cites W2049015414 @default.
- W3088689062 cites W2051297558 @default.
- W3088689062 cites W2061517309 @default.
- W3088689062 cites W2063580733 @default.
- W3088689062 cites W2067511707 @default.
- W3088689062 cites W2087884757 @default.
- W3088689062 cites W2093478636 @default.
- W3088689062 cites W2097175786 @default.
- W3088689062 cites W2101028409 @default.
- W3088689062 cites W2119742475 @default.
- W3088689062 cites W2131545754 @default.
- W3088689062 cites W2156011321 @default.
- W3088689062 cites W2163290397 @default.
- W3088689062 cites W2306243277 @default.
- W3088689062 cites W2317481118 @default.
- W3088689062 cites W2329540589 @default.
- W3088689062 cites W2334419518 @default.
- W3088689062 cites W2340571531 @default.
- W3088689062 cites W2413141500 @default.
- W3088689062 cites W2508549953 @default.
- W3088689062 cites W2607808947 @default.
- W3088689062 cites W2608764671 @default.
- W3088689062 cites W2612337017 @default.
- W3088689062 cites W2724989966 @default.
- W3088689062 cites W2730709843 @default.
- W3088689062 cites W2742154025 @default.
- W3088689062 cites W2754769271 @default.
- W3088689062 cites W2766419552 @default.
- W3088689062 cites W2769897367 @default.
- W3088689062 cites W2784078401 @default.
- W3088689062 cites W2789331559 @default.
- W3088689062 cites W2803272388 @default.
- W3088689062 cites W2803453656 @default.
- W3088689062 cites W2809994961 @default.
- W3088689062 cites W2820367196 @default.
- W3088689062 cites W2887018805 @default.
- W3088689062 cites W2887058782 @default.
- W3088689062 cites W2898804093 @default.
- W3088689062 cites W2901199346 @default.
- W3088689062 cites W2908515326 @default.
- W3088689062 cites W2936174077 @default.
- W3088689062 cites W2951985551 @default.
- W3088689062 cites W2958683570 @default.
- W3088689062 cites W2964935422 @default.
- W3088689062 cites W2970350817 @default.
- W3088689062 cites W2973214152 @default.
- W3088689062 cites W2974443348 @default.
- W3088689062 cites W2979300874 @default.
- W3088689062 cites W2981461098 @default.
- W3088689062 cites W2981865785 @default.
- W3088689062 cites W2991648170 @default.
- W3088689062 cites W2999152754 @default.
- W3088689062 cites W2999334227 @default.
- W3088689062 cites W3012373810 @default.
- W3088689062 cites W3016113032 @default.
- W3088689062 cites W3039373239 @default.
- W3088689062 cites W3039538270 @default.
- W3088689062 cites W3042297147 @default.
- W3088689062 doi "https://doi.org/10.1002/edn3.137" @default.
- W3088689062 hasPublicationYear "2020" @default.
- W3088689062 type Work @default.
- W3088689062 sameAs 3088689062 @default.
- W3088689062 citedByCount "34" @default.
- W3088689062 countsByYear W30886890622020 @default.
- W3088689062 countsByYear W30886890622021 @default.
- W3088689062 countsByYear W30886890622022 @default.
- W3088689062 countsByYear W30886890622023 @default.
- W3088689062 crossrefType "journal-article" @default.
- W3088689062 hasAuthorship W3088689062A5053885667 @default.
- W3088689062 hasAuthorship W3088689062A5084223484 @default.
- W3088689062 hasAuthorship W3088689062A5086337854 @default.
- W3088689062 hasBestOaLocation W30886890621 @default.
- W3088689062 hasConcept C106131492 @default.
- W3088689062 hasConcept C110872660 @default.
- W3088689062 hasConcept C127313418 @default.
- W3088689062 hasConcept C129934472 @default.
- W3088689062 hasConcept C130217890 @default.
- W3088689062 hasConcept C140779682 @default.
- W3088689062 hasConcept C144024400 @default.
- W3088689062 hasConcept C149923435 @default.
- W3088689062 hasConcept C158709400 @default.
- W3088689062 hasConcept C187320778 @default.