Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088792280> ?p ?o ?g. }
- W3088792280 abstract "Abstract Objective The objective was to develop a fully automated algorithm for abdominal fat segmentation and deploy this method at scale and associated with diagnoses in an academic biobank. Materials and Methods We built a fully automated image curation and labeling technique using deep learning and distributive computing to identify subcutaneous and visceral abdominal fat compartments from 47,587 CT scans in 13,422 patients in the Penn Medicine Biobank (PMBB). A classification network identified the inferior and superior borders of the abdomen, and a segmentation network differentiated visceral and subcutaneous fat. Following technical evaluation of our method, we conducted studies to validate known relationships with adiposity. Results When compared with 100 manually annotated cases, the classification network was on average within one 5 mm slice for both the superior (0.3±0.6 slices) and inferior (0.7±0.6 slices) borders. The segmentation network also demonstrated excellent performance with interclass correlation coefficients of 0.99 (p<2e-16) for subcutaneous and 0.99 (p<2e-16) for visceral fat on 100 testing cases. We performed integrative analyses of abdominal fat with the phenome extracted from the electronic health record and found highly significant associations with diabetes mellitus, hypertension, renal failure, among other phenotypes. Conclusion This work presents a fully automated and highly accurate method for the quantification of abdominal fat that can be applied to routine clinical imaging studies to fuel translation scientific discovery." @default.
- W3088792280 created "2020-10-01" @default.
- W3088792280 creator A5004778903 @default.
- W3088792280 creator A5005340751 @default.
- W3088792280 creator A5007930206 @default.
- W3088792280 creator A5008397360 @default.
- W3088792280 creator A5009548457 @default.
- W3088792280 creator A5015003669 @default.
- W3088792280 creator A5022653825 @default.
- W3088792280 creator A5023241025 @default.
- W3088792280 creator A5040362081 @default.
- W3088792280 creator A5049607541 @default.
- W3088792280 creator A5049799071 @default.
- W3088792280 creator A5057578473 @default.
- W3088792280 creator A5067149045 @default.
- W3088792280 creator A5072312981 @default.
- W3088792280 creator A5079928581 @default.
- W3088792280 creator A5080030813 @default.
- W3088792280 creator A5082890040 @default.
- W3088792280 date "2020-09-23" @default.
- W3088792280 modified "2023-10-09" @default.
- W3088792280 title "Quantification of abdominal fat from computed tomography using deep learning and its association with electronic health records in an academic biobank" @default.
- W3088792280 cites W1901918943 @default.
- W3088792280 cites W1964607854 @default.
- W3088792280 cites W1966337856 @default.
- W3088792280 cites W1987552839 @default.
- W3088792280 cites W1992712179 @default.
- W3088792280 cites W2000134510 @default.
- W3088792280 cites W2003380115 @default.
- W3088792280 cites W2039514107 @default.
- W3088792280 cites W2047841158 @default.
- W3088792280 cites W2049798783 @default.
- W3088792280 cites W2055656016 @default.
- W3088792280 cites W2069819237 @default.
- W3088792280 cites W2082695535 @default.
- W3088792280 cites W2100003759 @default.
- W3088792280 cites W2101506819 @default.
- W3088792280 cites W2120613073 @default.
- W3088792280 cites W2125346636 @default.
- W3088792280 cites W2158043016 @default.
- W3088792280 cites W2161676255 @default.
- W3088792280 cites W2161847519 @default.
- W3088792280 cites W2169250812 @default.
- W3088792280 cites W2327474984 @default.
- W3088792280 cites W2550158653 @default.
- W3088792280 cites W2557738935 @default.
- W3088792280 cites W2581082771 @default.
- W3088792280 cites W2603403091 @default.
- W3088792280 cites W2752052309 @default.
- W3088792280 cites W2772723798 @default.
- W3088792280 cites W2888494577 @default.
- W3088792280 cites W2893911753 @default.
- W3088792280 cites W2895486342 @default.
- W3088792280 cites W2905023912 @default.
- W3088792280 cites W2995024066 @default.
- W3088792280 cites W3012715619 @default.
- W3088792280 cites W3106324661 @default.
- W3088792280 cites W3123990173 @default.
- W3088792280 doi "https://doi.org/10.1101/2020.09.22.20199844" @default.
- W3088792280 hasPublicationYear "2020" @default.
- W3088792280 type Work @default.
- W3088792280 sameAs 3088792280 @default.
- W3088792280 citedByCount "0" @default.
- W3088792280 crossrefType "posted-content" @default.
- W3088792280 hasAuthorship W3088792280A5004778903 @default.
- W3088792280 hasAuthorship W3088792280A5005340751 @default.
- W3088792280 hasAuthorship W3088792280A5007930206 @default.
- W3088792280 hasAuthorship W3088792280A5008397360 @default.
- W3088792280 hasAuthorship W3088792280A5009548457 @default.
- W3088792280 hasAuthorship W3088792280A5015003669 @default.
- W3088792280 hasAuthorship W3088792280A5022653825 @default.
- W3088792280 hasAuthorship W3088792280A5023241025 @default.
- W3088792280 hasAuthorship W3088792280A5040362081 @default.
- W3088792280 hasAuthorship W3088792280A5049607541 @default.
- W3088792280 hasAuthorship W3088792280A5049799071 @default.
- W3088792280 hasAuthorship W3088792280A5057578473 @default.
- W3088792280 hasAuthorship W3088792280A5067149045 @default.
- W3088792280 hasAuthorship W3088792280A5072312981 @default.
- W3088792280 hasAuthorship W3088792280A5079928581 @default.
- W3088792280 hasAuthorship W3088792280A5080030813 @default.
- W3088792280 hasAuthorship W3088792280A5082890040 @default.
- W3088792280 hasBestOaLocation W30887922801 @default.
- W3088792280 hasConcept C104317684 @default.
- W3088792280 hasConcept C108583219 @default.
- W3088792280 hasConcept C116567970 @default.
- W3088792280 hasConcept C126322002 @default.
- W3088792280 hasConcept C126838900 @default.
- W3088792280 hasConcept C127716648 @default.
- W3088792280 hasConcept C134018914 @default.
- W3088792280 hasConcept C154945302 @default.
- W3088792280 hasConcept C171089720 @default.
- W3088792280 hasConcept C2779983558 @default.
- W3088792280 hasConcept C2991684624 @default.
- W3088792280 hasConcept C3018861615 @default.
- W3088792280 hasConcept C41008148 @default.
- W3088792280 hasConcept C511355011 @default.
- W3088792280 hasConcept C534262118 @default.
- W3088792280 hasConcept C55493867 @default.
- W3088792280 hasConcept C555293320 @default.
- W3088792280 hasConcept C60644358 @default.