Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088795831> ?p ?o ?g. }
- W3088795831 endingPage "1759" @default.
- W3088795831 startingPage "1743" @default.
- W3088795831 abstract "Abstract. Low-level clouds play a key role in the energy budget and hydrological cycle of the climate system. The accurate long-term observation of low-level clouds is essential for understanding their climate effect and model constraints. Both ground-based and spaceborne millimeter-wavelength cloud radars can penetrate clouds but the detected low-level clouds are always contaminated by clutter, which needs to be removed. In this study, we develop an algorithm to accurately separate low-level clouds from clutter for ground-based cloud radar using multi-dimensional probability distribution functions along with the Bayesian method. The radar reflectivity, linear depolarization ratio, spectral width, and their dependence on the time of the day, height, and season are used as the discriminants. A low-pass spatial filter is applied to the Bayesian undecided classification mask by considering the spatial correlation difference between clouds and clutter. The final feature mask result has a good agreement with lidar detection, showing a high probability of detection rate (98.45 %) and a low false alarm rate (0.37 %). This algorithm will be used to reliably detect low-level clouds at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) site for the study of their climate effect and the interaction with local abundant dust aerosol in semi-arid regions." @default.
- W3088795831 created "2020-10-01" @default.
- W3088795831 creator A5033323309 @default.
- W3088795831 creator A5049297070 @default.
- W3088795831 creator A5059939272 @default.
- W3088795831 creator A5061797622 @default.
- W3088795831 creator A5089331155 @default.
- W3088795831 creator A5089802663 @default.
- W3088795831 date "2021-03-03" @default.
- W3088795831 modified "2023-10-16" @default.
- W3088795831 title "A robust low-level cloud and clutter discrimination method for ground-based millimeter-wavelength cloud radar" @default.
- W3088795831 cites W1529757338 @default.
- W3088795831 cites W1607613074 @default.
- W3088795831 cites W1753217896 @default.
- W3088795831 cites W1768605074 @default.
- W3088795831 cites W1847202262 @default.
- W3088795831 cites W1860299936 @default.
- W3088795831 cites W1884173788 @default.
- W3088795831 cites W1892251272 @default.
- W3088795831 cites W1986167706 @default.
- W3088795831 cites W1987423089 @default.
- W3088795831 cites W1992802510 @default.
- W3088795831 cites W1993727835 @default.
- W3088795831 cites W2001489127 @default.
- W3088795831 cites W2011189209 @default.
- W3088795831 cites W2020013590 @default.
- W3088795831 cites W2020854570 @default.
- W3088795831 cites W2024923416 @default.
- W3088795831 cites W2026616956 @default.
- W3088795831 cites W2028746097 @default.
- W3088795831 cites W2035570184 @default.
- W3088795831 cites W2038712866 @default.
- W3088795831 cites W2039322025 @default.
- W3088795831 cites W2045884461 @default.
- W3088795831 cites W2053001846 @default.
- W3088795831 cites W2053430295 @default.
- W3088795831 cites W2059001516 @default.
- W3088795831 cites W2068241377 @default.
- W3088795831 cites W2071507402 @default.
- W3088795831 cites W2079377361 @default.
- W3088795831 cites W2082238833 @default.
- W3088795831 cites W2095629455 @default.
- W3088795831 cites W2097856811 @default.
- W3088795831 cites W2099274776 @default.
- W3088795831 cites W2102904464 @default.
- W3088795831 cites W2114836436 @default.
- W3088795831 cites W2118824280 @default.
- W3088795831 cites W2120631399 @default.
- W3088795831 cites W2123234161 @default.
- W3088795831 cites W2131406292 @default.
- W3088795831 cites W2134861810 @default.
- W3088795831 cites W2146632895 @default.
- W3088795831 cites W2148573849 @default.
- W3088795831 cites W2169445778 @default.
- W3088795831 cites W2172826962 @default.
- W3088795831 cites W2424056340 @default.
- W3088795831 cites W2513783605 @default.
- W3088795831 cites W2559778902 @default.
- W3088795831 cites W2562743618 @default.
- W3088795831 cites W2578203214 @default.
- W3088795831 cites W2594913435 @default.
- W3088795831 cites W2607989030 @default.
- W3088795831 cites W2617707081 @default.
- W3088795831 cites W2626851913 @default.
- W3088795831 cites W2737397751 @default.
- W3088795831 cites W2749949380 @default.
- W3088795831 cites W2755636306 @default.
- W3088795831 cites W2758633056 @default.
- W3088795831 cites W2770647289 @default.
- W3088795831 cites W2783860367 @default.
- W3088795831 cites W2793445063 @default.
- W3088795831 cites W2800123512 @default.
- W3088795831 cites W2801236657 @default.
- W3088795831 cites W2802863456 @default.
- W3088795831 cites W2804310927 @default.
- W3088795831 cites W2843634981 @default.
- W3088795831 cites W2885986786 @default.
- W3088795831 cites W2890326745 @default.
- W3088795831 cites W2892974049 @default.
- W3088795831 cites W2897553837 @default.
- W3088795831 cites W2898216467 @default.
- W3088795831 cites W2946800370 @default.
- W3088795831 cites W2949118961 @default.
- W3088795831 cites W2965045250 @default.
- W3088795831 cites W2965102826 @default.
- W3088795831 cites W2970741723 @default.
- W3088795831 cites W2972715463 @default.
- W3088795831 cites W2975306981 @default.
- W3088795831 cites W2994228263 @default.
- W3088795831 cites W2995807102 @default.
- W3088795831 cites W2998500935 @default.
- W3088795831 cites W3000272091 @default.
- W3088795831 cites W3005153746 @default.
- W3088795831 doi "https://doi.org/10.5194/amt-14-1743-2021" @default.
- W3088795831 hasPublicationYear "2021" @default.
- W3088795831 type Work @default.
- W3088795831 sameAs 3088795831 @default.
- W3088795831 citedByCount "4" @default.