Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088800356> ?p ?o ?g. }
- W3088800356 endingPage "064002" @default.
- W3088800356 startingPage "064002" @default.
- W3088800356 abstract "Abstract In several diagnosis and therapy procedures based on electrostimulation effect, the internal physical quantity related to the stimulation is the induced electric field. To estimate the induced electric field in an individual human model, the segmentation of anatomical imaging, such as magnetic resonance image (MRI) scans, of the corresponding body parts into tissues is required. Then, electrical properties associated with different annotated tissues are assigned to the digital model to generate a volume conductor. However, the segmentation of different tissues is a tedious task with several associated challenges specially with tissues appear in limited regions and/or low-contrast in anatomical images. An open question is how segmentation accuracy of different tissues would influence the distribution of the induced electric field. In this study, we applied parametric segmentation of different tissues to exploit the segmentation of available MRI to generate different quality of head models using deep learning neural network architecture, named ForkNet. Then, the induced electric field are compared to assess the effect of model segmentation variations. Computational results indicate that the influence of segmentation error is tissue-dependent. In brain, sensitivity to segmentation accuracy is relatively high in cerebrospinal fluid (CSF), moderate in gray matter (GM) and low in white matter for transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES). A CSF segmentation accuracy reduction of 10% in terms of Dice coefficient (DC) lead to decrease up to 4% in normalized induced electric field in both applications. However, a GM segmentation accuracy reduction of 5.6% DC leads to increase of normalized induced electric field up to 6%. Opposite trend of electric field variation was found between CSF and GM for both TMS and tES. The finding obtained here would be useful to quantify potential uncertainty of computational results." @default.
- W3088800356 created "2020-10-01" @default.
- W3088800356 creator A5041954621 @default.
- W3088800356 creator A5056879425 @default.
- W3088800356 creator A5059397647 @default.
- W3088800356 date "2021-03-08" @default.
- W3088800356 modified "2023-10-16" @default.
- W3088800356 title "Influence of segmentation accuracy in structural MR head scans on electric field computation for TMS and tES" @default.
- W3088800356 cites W1605096437 @default.
- W3088800356 cites W1695351344 @default.
- W3088800356 cites W1973596946 @default.
- W3088800356 cites W2022981781 @default.
- W3088800356 cites W2027093816 @default.
- W3088800356 cites W2028158228 @default.
- W3088800356 cites W2050236517 @default.
- W3088800356 cites W2058944807 @default.
- W3088800356 cites W2061551969 @default.
- W3088800356 cites W2072329804 @default.
- W3088800356 cites W2075265249 @default.
- W3088800356 cites W2082184326 @default.
- W3088800356 cites W2082526227 @default.
- W3088800356 cites W2095116161 @default.
- W3088800356 cites W2107495673 @default.
- W3088800356 cites W2108805590 @default.
- W3088800356 cites W2123171443 @default.
- W3088800356 cites W2127919130 @default.
- W3088800356 cites W2140358254 @default.
- W3088800356 cites W2145368883 @default.
- W3088800356 cites W2157458634 @default.
- W3088800356 cites W2294723523 @default.
- W3088800356 cites W2589647984 @default.
- W3088800356 cites W2621028221 @default.
- W3088800356 cites W2763859001 @default.
- W3088800356 cites W2770706469 @default.
- W3088800356 cites W2791427514 @default.
- W3088800356 cites W2865734900 @default.
- W3088800356 cites W2900489637 @default.
- W3088800356 cites W2951963925 @default.
- W3088800356 cites W2970189425 @default.
- W3088800356 cites W3002592339 @default.
- W3088800356 cites W3005948428 @default.
- W3088800356 cites W3033878890 @default.
- W3088800356 cites W3040811736 @default.
- W3088800356 cites W3104087655 @default.
- W3088800356 cites W4206222665 @default.
- W3088800356 cites W2162028003 @default.
- W3088800356 doi "https://doi.org/10.1088/1361-6560/abe223" @default.
- W3088800356 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33524957" @default.
- W3088800356 hasPublicationYear "2021" @default.
- W3088800356 type Work @default.
- W3088800356 sameAs 3088800356 @default.
- W3088800356 citedByCount "7" @default.
- W3088800356 countsByYear W30888003562021 @default.
- W3088800356 countsByYear W30888003562022 @default.
- W3088800356 countsByYear W30888003562023 @default.
- W3088800356 crossrefType "journal-article" @default.
- W3088800356 hasAuthorship W3088800356A5041954621 @default.
- W3088800356 hasAuthorship W3088800356A5056879425 @default.
- W3088800356 hasAuthorship W3088800356A5059397647 @default.
- W3088800356 hasBestOaLocation W30888003562 @default.
- W3088800356 hasConcept C105795698 @default.
- W3088800356 hasConcept C117251300 @default.
- W3088800356 hasConcept C124504099 @default.
- W3088800356 hasConcept C126838900 @default.
- W3088800356 hasConcept C143409427 @default.
- W3088800356 hasConcept C153180895 @default.
- W3088800356 hasConcept C154945302 @default.
- W3088800356 hasConcept C15744967 @default.
- W3088800356 hasConcept C163892561 @default.
- W3088800356 hasConcept C169760540 @default.
- W3088800356 hasConcept C24998067 @default.
- W3088800356 hasConcept C2778581513 @default.
- W3088800356 hasConcept C31972630 @default.
- W3088800356 hasConcept C33923547 @default.
- W3088800356 hasConcept C41008148 @default.
- W3088800356 hasConcept C71924100 @default.
- W3088800356 hasConcept C89600930 @default.
- W3088800356 hasConceptScore W3088800356C105795698 @default.
- W3088800356 hasConceptScore W3088800356C117251300 @default.
- W3088800356 hasConceptScore W3088800356C124504099 @default.
- W3088800356 hasConceptScore W3088800356C126838900 @default.
- W3088800356 hasConceptScore W3088800356C143409427 @default.
- W3088800356 hasConceptScore W3088800356C153180895 @default.
- W3088800356 hasConceptScore W3088800356C154945302 @default.
- W3088800356 hasConceptScore W3088800356C15744967 @default.
- W3088800356 hasConceptScore W3088800356C163892561 @default.
- W3088800356 hasConceptScore W3088800356C169760540 @default.
- W3088800356 hasConceptScore W3088800356C24998067 @default.
- W3088800356 hasConceptScore W3088800356C2778581513 @default.
- W3088800356 hasConceptScore W3088800356C31972630 @default.
- W3088800356 hasConceptScore W3088800356C33923547 @default.
- W3088800356 hasConceptScore W3088800356C41008148 @default.
- W3088800356 hasConceptScore W3088800356C71924100 @default.
- W3088800356 hasConceptScore W3088800356C89600930 @default.
- W3088800356 hasIssue "6" @default.
- W3088800356 hasLocation W30888003561 @default.
- W3088800356 hasLocation W30888003562 @default.
- W3088800356 hasLocation W30888003563 @default.