Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088837586> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3088837586 abstract "In this paper, we focus on two kinds of large deviations principles (LDPs) of the invariant measures of Langevin equations and their numerical methods, as the noise intensity $epsilonto 0$ and the dissipation intensity $nutoinfty$ respectively. First, by proving the weak LDP and the exponential tightness, we conclude that the invariant measure ${mu_{nu,epsilon}}$ of the exact solution satisfies the LDPs as $epsilonto0$ and $nutoinfty$ respectively. Then, we study whether there exist numerical methods asymptotically preserving these two LDPs of ${mu_{nu,epsilon}}$ in the sense that the rate functions of invariant measures of numerical methods converge pointwise to the rate function of ${mu_{nu,epsilon}}$ as the step-size tends to zero. The answer is positive for the linear Langevin equation. For the small noise case, we show that a large class of numerical methods can asymptotically preserve the LDP of ${mu_{nu,epsilon}}_{epsilon>0}$ as $epsilonto0$. For the strong dissipation case, we study the stochastic $theta$-method ($thetain[1/2,1]$) and show that only the midpoint scheme ($theta=1/2$) can asymptotically preserve the LDP of ${mu_{nu,epsilon}}_{nu>0}$ as $nutoinfty$. These results indicate that in the linear case, the LDP as $epsilonto0$ and the LDP as $nutoinfty$ for the invariant measures of numerical methods have intrinsic differences: the common numerical methods can asymptotically preserve the LDP of ${mu_{nu,epsilon}}_{epsilon>0}$ as $epsilonto0$ while the asymptotical preservation of numerical methods for the LDP of ${mu_{nu,epsilon}}_{nu>0}$ as $nutoinfty$ depends on the choice of numerical methods. To the best of our knowledge, this is the first result of investigating the relationship between the LDPs of invariant measures of stochastic differential equations and those of their numerical methods." @default.
- W3088837586 created "2020-10-01" @default.
- W3088837586 creator A5006021782 @default.
- W3088837586 creator A5013990531 @default.
- W3088837586 creator A5018970203 @default.
- W3088837586 creator A5037860907 @default.
- W3088837586 date "2020-09-28" @default.
- W3088837586 modified "2023-09-27" @default.
- W3088837586 title "Numerically asymptotical preservation of the large deviations principles for invariant measures of Langevin equations." @default.
- W3088837586 cites W1529466478 @default.
- W3088837586 cites W1976802232 @default.
- W3088837586 cites W2022069161 @default.
- W3088837586 cites W2046451925 @default.
- W3088837586 cites W2059120410 @default.
- W3088837586 cites W2069441636 @default.
- W3088837586 cites W2104049095 @default.
- W3088837586 cites W2110874544 @default.
- W3088837586 cites W2168958073 @default.
- W3088837586 cites W2323824333 @default.
- W3088837586 cites W2591998133 @default.
- W3088837586 cites W2905120516 @default.
- W3088837586 cites W2962988308 @default.
- W3088837586 cites W2964769091 @default.
- W3088837586 cites W2969530557 @default.
- W3088837586 cites W3021966610 @default.
- W3088837586 cites W3029680759 @default.
- W3088837586 cites W3032963590 @default.
- W3088837586 cites W3039131765 @default.
- W3088837586 cites W3106482916 @default.
- W3088837586 hasPublicationYear "2020" @default.
- W3088837586 type Work @default.
- W3088837586 sameAs 3088837586 @default.
- W3088837586 citedByCount "2" @default.
- W3088837586 countsByYear W30888375862021 @default.
- W3088837586 crossrefType "posted-content" @default.
- W3088837586 hasAuthorship W3088837586A5006021782 @default.
- W3088837586 hasAuthorship W3088837586A5013990531 @default.
- W3088837586 hasAuthorship W3088837586A5018970203 @default.
- W3088837586 hasAuthorship W3088837586A5037860907 @default.
- W3088837586 hasConcept C105795698 @default.
- W3088837586 hasConcept C115667082 @default.
- W3088837586 hasConcept C121332964 @default.
- W3088837586 hasConcept C121864883 @default.
- W3088837586 hasConcept C122044880 @default.
- W3088837586 hasConcept C134306372 @default.
- W3088837586 hasConcept C135402231 @default.
- W3088837586 hasConcept C15964574 @default.
- W3088837586 hasConcept C190470478 @default.
- W3088837586 hasConcept C2777577648 @default.
- W3088837586 hasConcept C2777984123 @default.
- W3088837586 hasConcept C33923547 @default.
- W3088837586 hasConcept C37914503 @default.
- W3088837586 hasConcept C62520636 @default.
- W3088837586 hasConcept C75438885 @default.
- W3088837586 hasConceptScore W3088837586C105795698 @default.
- W3088837586 hasConceptScore W3088837586C115667082 @default.
- W3088837586 hasConceptScore W3088837586C121332964 @default.
- W3088837586 hasConceptScore W3088837586C121864883 @default.
- W3088837586 hasConceptScore W3088837586C122044880 @default.
- W3088837586 hasConceptScore W3088837586C134306372 @default.
- W3088837586 hasConceptScore W3088837586C135402231 @default.
- W3088837586 hasConceptScore W3088837586C15964574 @default.
- W3088837586 hasConceptScore W3088837586C190470478 @default.
- W3088837586 hasConceptScore W3088837586C2777577648 @default.
- W3088837586 hasConceptScore W3088837586C2777984123 @default.
- W3088837586 hasConceptScore W3088837586C33923547 @default.
- W3088837586 hasConceptScore W3088837586C37914503 @default.
- W3088837586 hasConceptScore W3088837586C62520636 @default.
- W3088837586 hasConceptScore W3088837586C75438885 @default.
- W3088837586 hasLocation W30888375861 @default.
- W3088837586 hasOpenAccess W3088837586 @default.
- W3088837586 hasPrimaryLocation W30888375861 @default.
- W3088837586 hasRelatedWork W1534634114 @default.
- W3088837586 hasRelatedWork W1548627622 @default.
- W3088837586 hasRelatedWork W2232028987 @default.
- W3088837586 hasRelatedWork W2264478434 @default.
- W3088837586 hasRelatedWork W2611743087 @default.
- W3088837586 hasRelatedWork W2749152370 @default.
- W3088837586 hasRelatedWork W2768108517 @default.
- W3088837586 hasRelatedWork W2900724411 @default.
- W3088837586 hasRelatedWork W2950161911 @default.
- W3088837586 hasRelatedWork W2952857009 @default.
- W3088837586 hasRelatedWork W2952861396 @default.
- W3088837586 hasRelatedWork W2953154254 @default.
- W3088837586 hasRelatedWork W2961762179 @default.
- W3088837586 hasRelatedWork W2963819533 @default.
- W3088837586 hasRelatedWork W3100584031 @default.
- W3088837586 hasRelatedWork W3164512438 @default.
- W3088837586 hasRelatedWork W3171891214 @default.
- W3088837586 hasRelatedWork W3175907392 @default.
- W3088837586 hasRelatedWork W3183069953 @default.
- W3088837586 hasRelatedWork W3199032239 @default.
- W3088837586 isParatext "false" @default.
- W3088837586 isRetracted "false" @default.
- W3088837586 magId "3088837586" @default.
- W3088837586 workType "article" @default.