Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088890600> ?p ?o ?g. }
- W3088890600 abstract "Deep learning networks are increasingly attracting attention in various fields, including electroencephalography (EEG) signal processing. These models provided comparable performance with that of traditional techniques. At present, however, lacks of well-structured and standardized datasets with specific benchmark limit the development of deep learning solutions for EEG denoising. Here, we present EEGdenoiseNet, a benchmark EEG dataset that is suited for training and testing deep learning-based denoising models, as well as for performance comparisons across models. EEGdenoiseNet contains 4514 clean EEG segments, 3400 ocular artifact segments and 5598 muscular artifact segments, allowing users to synthesize noisy EEG segments with the ground-truth clean EEG. We used EEGdenoiseNet to evaluate denoising performance of four classical networks (a fully-connected network, a simple and a complex convolution network, and a recurrent neural network). Our analysis suggested that deep learning methods have great potential for EEG denoising even under high noise contamination. Through EEGdenoiseNet, we hope to accelerate the development of the emerging field of deep learning-based EEG denoising." @default.
- W3088890600 created "2020-10-01" @default.
- W3088890600 creator A5002377377 @default.
- W3088890600 creator A5035509706 @default.
- W3088890600 creator A5039429080 @default.
- W3088890600 creator A5055295211 @default.
- W3088890600 creator A5058653182 @default.
- W3088890600 creator A5078854583 @default.
- W3088890600 date "2020-09-24" @default.
- W3088890600 modified "2023-09-27" @default.
- W3088890600 title "EEGdenoiseNet: A benchmark dataset for deep learning solutions of EEG denoising" @default.
- W3088890600 cites W1686810756 @default.
- W3088890600 cites W1904365287 @default.
- W3088890600 cites W1970070014 @default.
- W3088890600 cites W1973656456 @default.
- W3088890600 cites W1980447390 @default.
- W3088890600 cites W1997065352 @default.
- W3088890600 cites W2001834784 @default.
- W3088890600 cites W2002055708 @default.
- W3088890600 cites W2010647700 @default.
- W3088890600 cites W2021345747 @default.
- W3088890600 cites W2044455804 @default.
- W3088890600 cites W2058725349 @default.
- W3088890600 cites W2064675550 @default.
- W3088890600 cites W2081312620 @default.
- W3088890600 cites W2082930519 @default.
- W3088890600 cites W2084461382 @default.
- W3088890600 cites W2085350184 @default.
- W3088890600 cites W2086494530 @default.
- W3088890600 cites W2089468765 @default.
- W3088890600 cites W2105271344 @default.
- W3088890600 cites W2108598243 @default.
- W3088890600 cites W2114512489 @default.
- W3088890600 cites W2119915586 @default.
- W3088890600 cites W2121113458 @default.
- W3088890600 cites W2123649031 @default.
- W3088890600 cites W2130942839 @default.
- W3088890600 cites W2138964882 @default.
- W3088890600 cites W2141330748 @default.
- W3088890600 cites W2150665176 @default.
- W3088890600 cites W2151669316 @default.
- W3088890600 cites W2163586027 @default.
- W3088890600 cites W2183341477 @default.
- W3088890600 cites W2194775991 @default.
- W3088890600 cites W2218506909 @default.
- W3088890600 cites W2254832494 @default.
- W3088890600 cites W2327450850 @default.
- W3088890600 cites W2401231614 @default.
- W3088890600 cites W2470404915 @default.
- W3088890600 cites W2473971983 @default.
- W3088890600 cites W2534641366 @default.
- W3088890600 cites W2551178936 @default.
- W3088890600 cites W2557301950 @default.
- W3088890600 cites W2605163429 @default.
- W3088890600 cites W2738094961 @default.
- W3088890600 cites W2741907166 @default.
- W3088890600 cites W2791159829 @default.
- W3088890600 cites W2797212135 @default.
- W3088890600 cites W2810233376 @default.
- W3088890600 cites W2895843840 @default.
- W3088890600 cites W2914483840 @default.
- W3088890600 cites W2924629150 @default.
- W3088890600 cites W2945186232 @default.
- W3088890600 cites W2949117887 @default.
- W3088890600 cites W2950577311 @default.
- W3088890600 cites W2953295210 @default.
- W3088890600 cites W2955832560 @default.
- W3088890600 cites W2963037202 @default.
- W3088890600 cites W2963355311 @default.
- W3088890600 cites W2963358591 @default.
- W3088890600 cites W2963403868 @default.
- W3088890600 cites W2981112208 @default.
- W3088890600 cites W2995149107 @default.
- W3088890600 cites W3003417734 @default.
- W3088890600 cites W3010708469 @default.
- W3088890600 cites W3018794429 @default.
- W3088890600 cites W3022162717 @default.
- W3088890600 cites W3080551539 @default.
- W3088890600 cites W3157397381 @default.
- W3088890600 cites W3161079408 @default.
- W3088890600 cites W600475373 @default.
- W3088890600 hasPublicationYear "2020" @default.
- W3088890600 type Work @default.
- W3088890600 sameAs 3088890600 @default.
- W3088890600 citedByCount "0" @default.
- W3088890600 crossrefType "posted-content" @default.
- W3088890600 hasAuthorship W3088890600A5002377377 @default.
- W3088890600 hasAuthorship W3088890600A5035509706 @default.
- W3088890600 hasAuthorship W3088890600A5039429080 @default.
- W3088890600 hasAuthorship W3088890600A5055295211 @default.
- W3088890600 hasAuthorship W3088890600A5058653182 @default.
- W3088890600 hasAuthorship W3088890600A5078854583 @default.
- W3088890600 hasConcept C108583219 @default.
- W3088890600 hasConcept C115961682 @default.
- W3088890600 hasConcept C118552586 @default.
- W3088890600 hasConcept C119857082 @default.
- W3088890600 hasConcept C153180895 @default.
- W3088890600 hasConcept C154945302 @default.
- W3088890600 hasConcept C15744967 @default.
- W3088890600 hasConcept C163294075 @default.