Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088896851> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3088896851 endingPage "325" @default.
- W3088896851 startingPage "315" @default.
- W3088896851 abstract "Construct a knowledge graph is time-consuming and the knowledge graph in the scientific domain requires extremely high labor costs due to it requires high prior knowledge to extract knowledge from resources. To build a scientific research knowledge graph, the most of input are papers, patent, the description of their project and some national program (such as National High Technology Research and Development Program of China, Major State Basic Research Development Program of China, General Program, Key Program and Major Program) which all of them are unstructured data, that make human participation are mostly necessary to measure the quality. In this paper, we design and proposed a framework using active learning; this framework can be used to extract entity and relation from unstructured science and technology research data. This framework combines the human and machine learning approach together, which is active learning, to help user extract entity from those unstructured data with less time cost. By using those data to construct a CKG as annotation label, it further implements active learning tools and helps the expert to rapidly annotate the data with high accuracy. Those knowledge graph constructed by this framework can be used to finding similar research area, finding similar researchers, finding popular research areas and so on." @default.
- W3088896851 created "2020-10-01" @default.
- W3088896851 creator A5004135193 @default.
- W3088896851 creator A5014752324 @default.
- W3088896851 creator A5018863416 @default.
- W3088896851 creator A5065592637 @default.
- W3088896851 creator A5079362043 @default.
- W3088896851 date "2020-01-01" @default.
- W3088896851 modified "2023-10-16" @default.
- W3088896851 title "A Framework Using Active Learning to Rapidly Perform Named Entity Extraction and Relation Recognition for Science and Technology Knowledge Graph" @default.
- W3088896851 doi "https://doi.org/10.4236/jss.2020.89025" @default.
- W3088896851 hasPublicationYear "2020" @default.
- W3088896851 type Work @default.
- W3088896851 sameAs 3088896851 @default.
- W3088896851 citedByCount "0" @default.
- W3088896851 crossrefType "journal-article" @default.
- W3088896851 hasAuthorship W3088896851A5004135193 @default.
- W3088896851 hasAuthorship W3088896851A5014752324 @default.
- W3088896851 hasAuthorship W3088896851A5018863416 @default.
- W3088896851 hasAuthorship W3088896851A5065592637 @default.
- W3088896851 hasAuthorship W3088896851A5079362043 @default.
- W3088896851 hasBestOaLocation W30888968511 @default.
- W3088896851 hasConcept C119857082 @default.
- W3088896851 hasConcept C120567893 @default.
- W3088896851 hasConcept C124101348 @default.
- W3088896851 hasConcept C132525143 @default.
- W3088896851 hasConcept C154945302 @default.
- W3088896851 hasConcept C199360897 @default.
- W3088896851 hasConcept C207685749 @default.
- W3088896851 hasConcept C23123220 @default.
- W3088896851 hasConcept C2522767166 @default.
- W3088896851 hasConcept C2776321320 @default.
- W3088896851 hasConcept C2780801425 @default.
- W3088896851 hasConcept C2781252014 @default.
- W3088896851 hasConcept C2987255567 @default.
- W3088896851 hasConcept C41008148 @default.
- W3088896851 hasConcept C56739046 @default.
- W3088896851 hasConcept C75684735 @default.
- W3088896851 hasConcept C80444323 @default.
- W3088896851 hasConceptScore W3088896851C119857082 @default.
- W3088896851 hasConceptScore W3088896851C120567893 @default.
- W3088896851 hasConceptScore W3088896851C124101348 @default.
- W3088896851 hasConceptScore W3088896851C132525143 @default.
- W3088896851 hasConceptScore W3088896851C154945302 @default.
- W3088896851 hasConceptScore W3088896851C199360897 @default.
- W3088896851 hasConceptScore W3088896851C207685749 @default.
- W3088896851 hasConceptScore W3088896851C23123220 @default.
- W3088896851 hasConceptScore W3088896851C2522767166 @default.
- W3088896851 hasConceptScore W3088896851C2776321320 @default.
- W3088896851 hasConceptScore W3088896851C2780801425 @default.
- W3088896851 hasConceptScore W3088896851C2781252014 @default.
- W3088896851 hasConceptScore W3088896851C2987255567 @default.
- W3088896851 hasConceptScore W3088896851C41008148 @default.
- W3088896851 hasConceptScore W3088896851C56739046 @default.
- W3088896851 hasConceptScore W3088896851C75684735 @default.
- W3088896851 hasConceptScore W3088896851C80444323 @default.
- W3088896851 hasIssue "09" @default.
- W3088896851 hasLocation W30888968511 @default.
- W3088896851 hasOpenAccess W3088896851 @default.
- W3088896851 hasPrimaryLocation W30888968511 @default.
- W3088896851 hasRelatedWork W2402827239 @default.
- W3088896851 hasRelatedWork W2885675230 @default.
- W3088896851 hasRelatedWork W2916853871 @default.
- W3088896851 hasRelatedWork W3043550961 @default.
- W3088896851 hasRelatedWork W3088896851 @default.
- W3088896851 hasRelatedWork W3191833430 @default.
- W3088896851 hasRelatedWork W3200449081 @default.
- W3088896851 hasRelatedWork W4205758129 @default.
- W3088896851 hasRelatedWork W4308610986 @default.
- W3088896851 hasRelatedWork W4310444679 @default.
- W3088896851 hasVolume "08" @default.
- W3088896851 isParatext "false" @default.
- W3088896851 isRetracted "false" @default.
- W3088896851 magId "3088896851" @default.
- W3088896851 workType "article" @default.