Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089014518> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3089014518 abstract "<p>Lightning is formed in the atmosphere through the combination of complex dynamic and microphysical processes. Lightning can have a considerable influence on the environment and on the economy since it causes energy supply outages, forest fires, damages, injury and death of humans and livestock worldwide. Therefore, it is of great importance to be able to predict lightning incidence in order to protect people and installations. Despite numerous attempts to solve the important problem of lightning prediction (e.g., [1]&#8211;[3]), the complex processes and large number of parameters involved in the problem lend themselves to the potential application of a machine learning (ML) approach.</p><p>We recently proposed a ML-based lightning early-warning system with promising performance [4]. The proposed ML model is trained to nowcast lightning incidence during any one of&#160; three consecutive 10-minute time intervals and within a circular area of 30 km radius around a meteorological station. The system uses the real-time measured values of four meteorological parameters that are relevant to the mechanisms of electric charge generation in thunderstorms, namely the air pressure at station level (QFE), the air temperature 2 m above ground, the relative humidity, and the wind speed. The proposed algorithm was implemented using the data from 12 meteorological stations in Switzerland between 2006-2017 with a granularity of ten minutes. The stations were selected to be well distributed among different ranges of altitude and terrain topographies.</p><p>The algorithm requires the filtering out of a portion of the data which are identified as outliers. However, the process of the automatic identification of outliers is a challenging task which could also affect the model&#8217;s performance. In this presentation, we discuss this problem and present approaches that can be used to optimize the process.</p><p>&#160;</p><p><strong>References</strong></p><p>[1]&#160;&#160;&#160;&#160;&#160; D. Aranguren, J. Montanya, G. Sol&#225;, V. March, D. Romero, and H. Torres, &#8220;On the lightning hazard warning using electrostatic field: Analysis of summer thunderstorms in Spain,&#8221; J. Electrostat., vol. 67, no. 2&#8211;3, pp. 507&#8211;512, May 2009.</p><p>[2]&#160;&#160;&#160;&#160;&#160; G. N. Seroka, R. E. Orville, and C. Schumacher, &#8220;Radar Nowcasting of Total Lightning over the Kennedy Space Center,&#8221; Weather Forecast., vol. 27, no. 1, pp. 189&#8211;204, Feb. 2012.</p><p>[3]&#160;&#160;&#160;&#160;&#160; Q. Meng, W. Yao, and L. Xu, &#8220;Development of Lightning Nowcasting and Warning Technique and Its Application,&#8221; Adv. Meteorol., vol. 2019, pp. 1&#8211;9, Jan. 2019.</p><p>[4]&#160;&#160;&#160;&#160;&#160; A. Mostajabi, D. L. Finney, M. Rubinstein, and F. Rachidi, &#8220;Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques,&#8221; npj Clim. Atmos. Sci., vol. 2, no. 1, p. 41, 2019.</p>" @default.
- W3089014518 created "2020-10-01" @default.
- W3089014518 creator A5019856799 @default.
- W3089014518 creator A5025825047 @default.
- W3089014518 creator A5073188965 @default.
- W3089014518 creator A5077490425 @default.
- W3089014518 date "2020-03-23" @default.
- W3089014518 modified "2023-09-27" @default.
- W3089014518 title "Nowcasting Lightning Occurrence Using Machine Learning Techniques: The Challenge of Identifying Outliers" @default.
- W3089014518 cites W2022695621 @default.
- W3089014518 cites W2984597037 @default.
- W3089014518 doi "https://doi.org/10.5194/egusphere-egu2020-22302" @default.
- W3089014518 hasPublicationYear "2020" @default.
- W3089014518 type Work @default.
- W3089014518 sameAs 3089014518 @default.
- W3089014518 citedByCount "1" @default.
- W3089014518 countsByYear W30890145182022 @default.
- W3089014518 crossrefType "posted-content" @default.
- W3089014518 hasAuthorship W3089014518A5019856799 @default.
- W3089014518 hasAuthorship W3089014518A5025825047 @default.
- W3089014518 hasAuthorship W3089014518A5073188965 @default.
- W3089014518 hasAuthorship W3089014518A5077490425 @default.
- W3089014518 hasConcept C121332964 @default.
- W3089014518 hasConcept C153294291 @default.
- W3089014518 hasConcept C161840515 @default.
- W3089014518 hasConcept C163258240 @default.
- W3089014518 hasConcept C205649164 @default.
- W3089014518 hasConcept C2780500098 @default.
- W3089014518 hasConcept C2781013037 @default.
- W3089014518 hasConcept C39432304 @default.
- W3089014518 hasConcept C41008148 @default.
- W3089014518 hasConcept C47279414 @default.
- W3089014518 hasConcept C58640448 @default.
- W3089014518 hasConcept C60799052 @default.
- W3089014518 hasConcept C62520636 @default.
- W3089014518 hasConcept C69398868 @default.
- W3089014518 hasConcept C80316258 @default.
- W3089014518 hasConceptScore W3089014518C121332964 @default.
- W3089014518 hasConceptScore W3089014518C153294291 @default.
- W3089014518 hasConceptScore W3089014518C161840515 @default.
- W3089014518 hasConceptScore W3089014518C163258240 @default.
- W3089014518 hasConceptScore W3089014518C205649164 @default.
- W3089014518 hasConceptScore W3089014518C2780500098 @default.
- W3089014518 hasConceptScore W3089014518C2781013037 @default.
- W3089014518 hasConceptScore W3089014518C39432304 @default.
- W3089014518 hasConceptScore W3089014518C41008148 @default.
- W3089014518 hasConceptScore W3089014518C47279414 @default.
- W3089014518 hasConceptScore W3089014518C58640448 @default.
- W3089014518 hasConceptScore W3089014518C60799052 @default.
- W3089014518 hasConceptScore W3089014518C62520636 @default.
- W3089014518 hasConceptScore W3089014518C69398868 @default.
- W3089014518 hasConceptScore W3089014518C80316258 @default.
- W3089014518 hasLocation W30890145181 @default.
- W3089014518 hasOpenAccess W3089014518 @default.
- W3089014518 hasPrimaryLocation W30890145181 @default.
- W3089014518 hasRelatedWork W10697079 @default.
- W3089014518 hasRelatedWork W13260401 @default.
- W3089014518 hasRelatedWork W15119441 @default.
- W3089014518 hasRelatedWork W3391489 @default.
- W3089014518 hasRelatedWork W3446576 @default.
- W3089014518 hasRelatedWork W4067679 @default.
- W3089014518 hasRelatedWork W4275953 @default.
- W3089014518 hasRelatedWork W6229082 @default.
- W3089014518 hasRelatedWork W6680660 @default.
- W3089014518 hasRelatedWork W7724241 @default.
- W3089014518 isParatext "false" @default.
- W3089014518 isRetracted "false" @default.
- W3089014518 magId "3089014518" @default.
- W3089014518 workType "article" @default.