Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089040932> ?p ?o ?g. }
- W3089040932 endingPage "105776" @default.
- W3089040932 startingPage "105776" @default.
- W3089040932 abstract "Long-term changes in flood activity have often been reconstructed to understand their relationships to climate changes. This requires identification of flood layers according to certain characteristics (e.g., texture, geochemical composition, grain-size) and then to count them using naked-eye observation. This method is, however, time-consuming, and intrinsically characterized by a low resolution that may lead to bias and misidentification. To overcome this limitation, high-resolution analytical approaches can be used, such as X-ray fluorescence spectroscopy (XRF), X-ray computed tomography, or hyperspectral imaging (HSI). When coupled with discriminant algorithms, HSI allows for automatic identification of event layers. Here, we propose a new method of flood layers identification and counting based on the combination of both HSI and XRF core scanner analyses, applied to a Lake Bourget (French Alps) sediment sequence. We use a hyperspectral sensor from the short wave-infrared spectral range to create a discrimination model between event layers and continuous sedimentation. This first step allows the estimation of a classification map, with a prediction accuracy of 0.96, and then the automatic reconstruction of a reliable chronicle of event layers (including their occurrence and deposit thicknesses). XRF signals are then used to discriminate flood layers among all identified event layers based on site-specific geochemical elements (in the case of Lake Bourget: Mn and Ti). This results in an automatically generated flood chronicle. Changes in flood occurrence and event thickness through time reconstructed from the automatically generated floods chronicle are in good agreement with the naked-eye-generated chronicle. In detail, differences rely on a larger number of detected flood events (i.e., increase of 9% of the number of layers detected) and a more precise layer thickness estimation, thanks to a higher resolution. Therefore, the developed methodology opens a promising avenue to increase both the efficiency (timesaving) and robustness (higher accuracy) of paleoflood reconstructions from lake sediments. Also, this methodology can be applied to identify any specific layers (e.g., varve, tephra, mass-movement turbidite, tsunami) and, thereby, it has a direct implication in paleolimnology, paleoflood hydrology and paleoseismology from sediment archives." @default.
- W3089040932 created "2020-10-01" @default.
- W3089040932 creator A5003912477 @default.
- W3089040932 creator A5004556876 @default.
- W3089040932 creator A5011135562 @default.
- W3089040932 creator A5014452200 @default.
- W3089040932 creator A5016427432 @default.
- W3089040932 creator A5039879273 @default.
- W3089040932 creator A5046411351 @default.
- W3089040932 creator A5054074354 @default.
- W3089040932 creator A5062701326 @default.
- W3089040932 creator A5081905577 @default.
- W3089040932 date "2020-11-01" @default.
- W3089040932 modified "2023-10-16" @default.
- W3089040932 title "XRF and hyperspectral analyses as an automatic way to detect flood events in sediment cores" @default.
- W3089040932 cites W1514283370 @default.
- W3089040932 cites W1531939363 @default.
- W3089040932 cites W1974643559 @default.
- W3089040932 cites W1974905100 @default.
- W3089040932 cites W1986390233 @default.
- W3089040932 cites W1992662539 @default.
- W3089040932 cites W2000609323 @default.
- W3089040932 cites W2003951968 @default.
- W3089040932 cites W2016090370 @default.
- W3089040932 cites W2017987119 @default.
- W3089040932 cites W2038511129 @default.
- W3089040932 cites W2055398859 @default.
- W3089040932 cites W2056522327 @default.
- W3089040932 cites W2059022362 @default.
- W3089040932 cites W2065037440 @default.
- W3089040932 cites W2079665558 @default.
- W3089040932 cites W2083029259 @default.
- W3089040932 cites W2090435705 @default.
- W3089040932 cites W2094842475 @default.
- W3089040932 cites W2100743917 @default.
- W3089040932 cites W2103380727 @default.
- W3089040932 cites W2104009562 @default.
- W3089040932 cites W2109606373 @default.
- W3089040932 cites W2110418145 @default.
- W3089040932 cites W2116105486 @default.
- W3089040932 cites W2142073502 @default.
- W3089040932 cites W2144608614 @default.
- W3089040932 cites W2147416393 @default.
- W3089040932 cites W2150350458 @default.
- W3089040932 cites W2164583936 @default.
- W3089040932 cites W2166446427 @default.
- W3089040932 cites W2177411238 @default.
- W3089040932 cites W2555466080 @default.
- W3089040932 cites W2596716888 @default.
- W3089040932 cites W2733591563 @default.
- W3089040932 cites W2771313288 @default.
- W3089040932 cites W2775812371 @default.
- W3089040932 cites W2788808667 @default.
- W3089040932 cites W2796746400 @default.
- W3089040932 cites W2893276853 @default.
- W3089040932 cites W2893346631 @default.
- W3089040932 cites W2900618044 @default.
- W3089040932 cites W2914431667 @default.
- W3089040932 cites W2916564579 @default.
- W3089040932 cites W2916793139 @default.
- W3089040932 cites W2922773477 @default.
- W3089040932 cites W2970830005 @default.
- W3089040932 cites W2981822331 @default.
- W3089040932 doi "https://doi.org/10.1016/j.sedgeo.2020.105776" @default.
- W3089040932 hasPublicationYear "2020" @default.
- W3089040932 type Work @default.
- W3089040932 sameAs 3089040932 @default.
- W3089040932 citedByCount "13" @default.
- W3089040932 countsByYear W30890409322021 @default.
- W3089040932 countsByYear W30890409322022 @default.
- W3089040932 countsByYear W30890409322023 @default.
- W3089040932 crossrefType "journal-article" @default.
- W3089040932 hasAuthorship W3089040932A5003912477 @default.
- W3089040932 hasAuthorship W3089040932A5004556876 @default.
- W3089040932 hasAuthorship W3089040932A5011135562 @default.
- W3089040932 hasAuthorship W3089040932A5014452200 @default.
- W3089040932 hasAuthorship W3089040932A5016427432 @default.
- W3089040932 hasAuthorship W3089040932A5039879273 @default.
- W3089040932 hasAuthorship W3089040932A5046411351 @default.
- W3089040932 hasAuthorship W3089040932A5054074354 @default.
- W3089040932 hasAuthorship W3089040932A5062701326 @default.
- W3089040932 hasAuthorship W3089040932A5081905577 @default.
- W3089040932 hasBestOaLocation W30890409321 @default.
- W3089040932 hasConcept C114793014 @default.
- W3089040932 hasConcept C116834253 @default.
- W3089040932 hasConcept C121332964 @default.
- W3089040932 hasConcept C127313418 @default.
- W3089040932 hasConcept C154945302 @default.
- W3089040932 hasConcept C159078339 @default.
- W3089040932 hasConcept C166957645 @default.
- W3089040932 hasConcept C205649164 @default.
- W3089040932 hasConcept C2779662365 @default.
- W3089040932 hasConcept C2779751349 @default.
- W3089040932 hasConcept C2816523 @default.
- W3089040932 hasConcept C41008148 @default.
- W3089040932 hasConcept C59822182 @default.
- W3089040932 hasConcept C62520636 @default.
- W3089040932 hasConcept C62649853 @default.