Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089090622> ?p ?o ?g. }
- W3089090622 abstract "Abstract Conserving additional energy from sunlight through bacteriochlorophyll (BChl)‐based reaction center or proton‐pumping rhodopsin is a highly successful life strategy in environmental bacteria. Rhodopsin and BChl based systems display contrasting characteristics in the size of coding operon, cost of biosynthesis, ease of expression control, and efficiency of energy production. This raises an intriguing question of whether a single bacterium has evolved the ability to perform these two types of phototrophy complementarily according to energy needs and environmental conditions. Here we report four Tardiphaga sp. strains (Alphaproteobacteria) of monophyletic origin isolated from a high Arctic glacier in northeast Greenland (81.566° N, 16.363° W) that are at different evolutionary stages concerning phototrophy. Their >99.8% identical genomes contain footprints of horizontal operon transfers (HOT) of the complete gene clusters encoding BChl and xanthorhodopsin (XR)‐based dual phototrophy. Two strains only possess a complete xanthorhodopsin (XR) operon, while the other two strains have both a photosynthesis gene cluster (PGC) and an XR operon in their genomes. All XR operons are heavily surrounded by mobile genetic elements and located close to a tRNA gene, strongly signaling that a HOT event of XR operon has occurred recently. Mining public genome databases and our High Arctic glacial and soil metagenomes revealed that phylogenetically diverse bacteria have the metabolic potential of performing BChl and rhodopsin‐based dual phototrophy. Our data provide new insights on how bacteria cope with the harsh and energy‐deficient environments in surface glaciers, possibly by maximizing the capability of exploiting solar energy. Importance Over billions of years of evolution, bacteria capable of light‐driven energy production have occupied every corner of surface Earth where solar irradiation can reach. Only two general biological systems have evolved in bacteria to be capable of net energy conservation via light‐harvesting: one is based on the pigment of (bacterio‐)chlorophyll and the other based on light‐sensing retinal molecules. There is emerging genomic evidence that these two rather different systems can co‐exist in a single bacterium to take advantage of their contrasting characteristics in the number of genes involved, biosynthesis cost, ease of expression control and efficiency of energy production, and thus enhance the capability of exploiting solar energy. Our data provide the first clear‐cut evidence that such dual phototrophy potentially exist in glacial bacteria. Further public genome mining suggests this understudied dual phototrophic mechanism is possibly more common than our data alone suggested. Sequence data availability Genomes, metagenomes and raw reads were deposited into GenBank under Bioprojects PRJNA548505 and PRJNA552582." @default.
- W3089090622 created "2020-10-01" @default.
- W3089090622 creator A5016816909 @default.
- W3089090622 creator A5045565573 @default.
- W3089090622 creator A5046793473 @default.
- W3089090622 creator A5046934123 @default.
- W3089090622 creator A5054037567 @default.
- W3089090622 creator A5064730267 @default.
- W3089090622 creator A5064874758 @default.
- W3089090622 creator A5066840503 @default.
- W3089090622 creator A5090059968 @default.
- W3089090622 date "2020-09-28" @default.
- W3089090622 modified "2023-10-18" @default.
- W3089090622 title "Potential Rhodopsin and Bacteriochlorophyll-Based Dual Phototrophy in a High Arctic Glacier" @default.
- W3089090622 cites W1519266993 @default.
- W3089090622 cites W1528671213 @default.
- W3089090622 cites W1553038050 @default.
- W3089090622 cites W1997389755 @default.
- W3089090622 cites W2019183187 @default.
- W3089090622 cites W2020884619 @default.
- W3089090622 cites W2023497022 @default.
- W3089090622 cites W2029702456 @default.
- W3089090622 cites W2031611770 @default.
- W3089090622 cites W2048794698 @default.
- W3089090622 cites W2056251063 @default.
- W3089090622 cites W2103115373 @default.
- W3089090622 cites W2107679249 @default.
- W3089090622 cites W2108234281 @default.
- W3089090622 cites W2110905563 @default.
- W3089090622 cites W2111647009 @default.
- W3089090622 cites W2112364185 @default.
- W3089090622 cites W2113399529 @default.
- W3089090622 cites W2119757130 @default.
- W3089090622 cites W2161683425 @default.
- W3089090622 cites W2170404490 @default.
- W3089090622 cites W2170551349 @default.
- W3089090622 cites W2171777099 @default.
- W3089090622 cites W2520785555 @default.
- W3089090622 cites W2606628088 @default.
- W3089090622 cites W2620223621 @default.
- W3089090622 cites W2622125542 @default.
- W3089090622 cites W2736920791 @default.
- W3089090622 cites W2745006471 @default.
- W3089090622 cites W2789911588 @default.
- W3089090622 cites W2794547835 @default.
- W3089090622 cites W2804249481 @default.
- W3089090622 cites W2889019390 @default.
- W3089090622 cites W2930480799 @default.
- W3089090622 cites W2952167528 @default.
- W3089090622 cites W2966335101 @default.
- W3089090622 cites W2980660344 @default.
- W3089090622 doi "https://doi.org/10.1101/2020.09.28.316679" @default.
- W3089090622 hasPublicationYear "2020" @default.
- W3089090622 type Work @default.
- W3089090622 sameAs 3089090622 @default.
- W3089090622 citedByCount "0" @default.
- W3089090622 crossrefType "posted-content" @default.
- W3089090622 hasAuthorship W3089090622A5016816909 @default.
- W3089090622 hasAuthorship W3089090622A5045565573 @default.
- W3089090622 hasAuthorship W3089090622A5046793473 @default.
- W3089090622 hasAuthorship W3089090622A5046934123 @default.
- W3089090622 hasAuthorship W3089090622A5054037567 @default.
- W3089090622 hasAuthorship W3089090622A5064730267 @default.
- W3089090622 hasAuthorship W3089090622A5064874758 @default.
- W3089090622 hasAuthorship W3089090622A5066840503 @default.
- W3089090622 hasAuthorship W3089090622A5090059968 @default.
- W3089090622 hasBestOaLocation W30890906221 @default.
- W3089090622 hasConcept C104317684 @default.
- W3089090622 hasConcept C141231307 @default.
- W3089090622 hasConcept C142796444 @default.
- W3089090622 hasConcept C172459030 @default.
- W3089090622 hasConcept C18903297 @default.
- W3089090622 hasConcept C197322856 @default.
- W3089090622 hasConcept C202033177 @default.
- W3089090622 hasConcept C203075996 @default.
- W3089090622 hasConcept C2780784151 @default.
- W3089090622 hasConcept C2780827179 @default.
- W3089090622 hasConcept C2780892065 @default.
- W3089090622 hasConcept C523546767 @default.
- W3089090622 hasConcept C54355233 @default.
- W3089090622 hasConcept C547475151 @default.
- W3089090622 hasConcept C59822182 @default.
- W3089090622 hasConcept C78458016 @default.
- W3089090622 hasConcept C86803240 @default.
- W3089090622 hasConcept C92938381 @default.
- W3089090622 hasConceptScore W3089090622C104317684 @default.
- W3089090622 hasConceptScore W3089090622C141231307 @default.
- W3089090622 hasConceptScore W3089090622C142796444 @default.
- W3089090622 hasConceptScore W3089090622C172459030 @default.
- W3089090622 hasConceptScore W3089090622C18903297 @default.
- W3089090622 hasConceptScore W3089090622C197322856 @default.
- W3089090622 hasConceptScore W3089090622C202033177 @default.
- W3089090622 hasConceptScore W3089090622C203075996 @default.
- W3089090622 hasConceptScore W3089090622C2780784151 @default.
- W3089090622 hasConceptScore W3089090622C2780827179 @default.
- W3089090622 hasConceptScore W3089090622C2780892065 @default.
- W3089090622 hasConceptScore W3089090622C523546767 @default.
- W3089090622 hasConceptScore W3089090622C54355233 @default.
- W3089090622 hasConceptScore W3089090622C547475151 @default.
- W3089090622 hasConceptScore W3089090622C59822182 @default.