Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089090706> ?p ?o ?g. }
- W3089090706 endingPage "112093" @default.
- W3089090706 startingPage "112093" @default.
- W3089090706 abstract "For the past two decades, quantitative retrievals of aerosol optical depth (AOD) have been made from both geostationary and polar-orbiting satellites, and the results have been widely used in numerous studies. Despite the progress made in improving the accuracy of AOD retrievals, there are still major challenges, especially over land. A notable one for the so-called Dark-Target (DT) algorithms is building the surface reflectance (SR) relationships (SRR) to derive SR in the visible channels from SR in the short-wave infrared (SWIR) channel, mainly because these relationships are strongly subjected to entangled factors (e.g., viewing geometry, surface type, and vegetation state). In this study, we examine the benefits of a new method for deriving the SRR using deep learning techniques. The SRR constructed by the deep neural network (DNN) considers multiple related inputs, such as the SWIR normalized difference vegetation index (NDVISWIR), viewing geometry, and seasonality, among others. We then incorporate the DNN-constrained SRR into a DT algorithm developed at NOAA/STAR to retrieve AOD from the Advanced Himawari Instrument (AHI) onboard the new generation of geostationary satellites, Himawari-8. The revised DT algorithm with the deep learning technique (DTDL) demonstrates improved performance over the study region (95–125°E, 18–30°N, a portion of the AHI full disk), as attested by significantly reduced random noise, especially for low NDVISWIR and high surface albedo cases. Robust independent tests indicate that this algorithm can be applied to untrained regions, not only to those used in training. The method directly benefits the algorithm development for Himawari-8 and can also be adopted for other geostationary or polar-orbiting satellites. Our study illustrates how artificial intelligence could significantly improve AOD retrievals from multi-spectral satellite observations following this new approach." @default.
- W3089090706 created "2020-10-01" @default.
- W3089090706 creator A5007363927 @default.
- W3089090706 creator A5029400518 @default.
- W3089090706 creator A5037950211 @default.
- W3089090706 creator A5060936464 @default.
- W3089090706 creator A5077513211 @default.
- W3089090706 date "2020-12-01" @default.
- W3089090706 modified "2023-10-15" @default.
- W3089090706 title "Refining aerosol optical depth retrievals over land by constructing the relationship of spectral surface reflectances through deep learning: Application to Himawari-8" @default.
- W3089090706 cites W1510787316 @default.
- W3089090706 cites W1606767976 @default.
- W3089090706 cites W1774765787 @default.
- W3089090706 cites W1970865258 @default.
- W3089090706 cites W1983299260 @default.
- W3089090706 cites W1987098847 @default.
- W3089090706 cites W1987337512 @default.
- W3089090706 cites W2001981020 @default.
- W3089090706 cites W2013519992 @default.
- W3089090706 cites W2021458827 @default.
- W3089090706 cites W2024862785 @default.
- W3089090706 cites W2027721022 @default.
- W3089090706 cites W2033055259 @default.
- W3089090706 cites W2037212214 @default.
- W3089090706 cites W2050250373 @default.
- W3089090706 cites W2062655401 @default.
- W3089090706 cites W2066387723 @default.
- W3089090706 cites W2076063813 @default.
- W3089090706 cites W2080320130 @default.
- W3089090706 cites W2083128385 @default.
- W3089090706 cites W2087965082 @default.
- W3089090706 cites W2095598361 @default.
- W3089090706 cites W2102834380 @default.
- W3089090706 cites W2103775154 @default.
- W3089090706 cites W2103977502 @default.
- W3089090706 cites W2107045929 @default.
- W3089090706 cites W2108069432 @default.
- W3089090706 cites W2110890760 @default.
- W3089090706 cites W2119744638 @default.
- W3089090706 cites W2119785460 @default.
- W3089090706 cites W2125763679 @default.
- W3089090706 cites W2125765412 @default.
- W3089090706 cites W2129479849 @default.
- W3089090706 cites W2141526687 @default.
- W3089090706 cites W2145265567 @default.
- W3089090706 cites W2145971409 @default.
- W3089090706 cites W2148854824 @default.
- W3089090706 cites W2152465183 @default.
- W3089090706 cites W2155745778 @default.
- W3089090706 cites W2158143121 @default.
- W3089090706 cites W2161245744 @default.
- W3089090706 cites W2169258810 @default.
- W3089090706 cites W2169484922 @default.
- W3089090706 cites W2170041334 @default.
- W3089090706 cites W2175254974 @default.
- W3089090706 cites W2255002787 @default.
- W3089090706 cites W2313649188 @default.
- W3089090706 cites W2322236889 @default.
- W3089090706 cites W2523739134 @default.
- W3089090706 cites W2565516711 @default.
- W3089090706 cites W2595278376 @default.
- W3089090706 cites W2617654664 @default.
- W3089090706 cites W2657631929 @default.
- W3089090706 cites W2742024368 @default.
- W3089090706 cites W2750830902 @default.
- W3089090706 cites W2754054583 @default.
- W3089090706 cites W2759421184 @default.
- W3089090706 cites W2769790383 @default.
- W3089090706 cites W2773294748 @default.
- W3089090706 cites W2785913783 @default.
- W3089090706 cites W2798095810 @default.
- W3089090706 cites W2804076223 @default.
- W3089090706 cites W2890236410 @default.
- W3089090706 cites W2896823820 @default.
- W3089090706 cites W2900379721 @default.
- W3089090706 cites W2900901958 @default.
- W3089090706 cites W2904671025 @default.
- W3089090706 cites W2909340263 @default.
- W3089090706 cites W2913323966 @default.
- W3089090706 cites W2914877608 @default.
- W3089090706 cites W2953978338 @default.
- W3089090706 cites W2954412651 @default.
- W3089090706 cites W2963249980 @default.
- W3089090706 cites W2963374347 @default.
- W3089090706 cites W2969580756 @default.
- W3089090706 cites W2981043630 @default.
- W3089090706 cites W2981273540 @default.
- W3089090706 cites W2981441128 @default.
- W3089090706 cites W2991398488 @default.
- W3089090706 cites W2994654273 @default.
- W3089090706 cites W3002090371 @default.
- W3089090706 cites W3013311113 @default.
- W3089090706 cites W3025482966 @default.
- W3089090706 cites W3033410393 @default.
- W3089090706 cites W4205947740 @default.
- W3089090706 doi "https://doi.org/10.1016/j.rse.2020.112093" @default.
- W3089090706 hasPublicationYear "2020" @default.
- W3089090706 type Work @default.