Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089096168> ?p ?o ?g. }
- W3089096168 endingPage "5097" @default.
- W3089096168 startingPage "5089" @default.
- W3089096168 abstract "Abstract Scientists working in translational oncology regularly conduct multigroup studies of mice with serially measured tumors. Longitudinal data collected can feature mid-study dropouts and complex nonlinear temporal response patterns. Parametric statistical models such as ones assuming exponential growth are useful for summarizing tumor volume over ranges for which the growth model holds, with the advantage that the model's parameter estimates can be used to summarize between-group differences in tumor volume growth with statistical measures of uncertainty. However, these same assumed growth models are too rigid to recapitulate patterns observed in many experiments, which in turn diminishes the effectiveness of their parameter estimates as summary statistics. To address this problem, we generalized such models by adopting a nonparametric approach in which group-level response trends for logarithmically scaled tumor volume are estimated as regression splines in a generalized additive mixed model. We also describe a novel summary statistic for group level splines over user-defined, experimentally relevant time ranges. This statistic reduces to the log-linear growth rate for data well described by exponential growth and also has a sampling distribution across groups that is well approximated by a multivariate Gaussian, thus facilitating downstream analysis. Real-data examples show that this nonparametric approach not only enhances fidelity in describing nonlinear growth scenarios but also improves statistical power to detect interregimen differences when compared with the simple exponential model so that it generalizes the linear mixed effects paradigm for analysis of log-linear growth to nonlinear scenarios in a useful way. Significance: This work generalizes the statistical linear mixed modeling paradigm for summarizing longitudinally measured preclinical tumor volume studies to encompass studies with nonlinear and nonmonotonic group response patterns in a statistically rigorous manner." @default.
- W3089096168 created "2020-10-01" @default.
- W3089096168 creator A5011797129 @default.
- W3089096168 creator A5024157745 @default.
- W3089096168 creator A5026893320 @default.
- W3089096168 creator A5031820960 @default.
- W3089096168 creator A5032465645 @default.
- W3089096168 creator A5035711153 @default.
- W3089096168 creator A5069334941 @default.
- W3089096168 creator A5077696981 @default.
- W3089096168 creator A5080833592 @default.
- W3089096168 date "2020-11-13" @default.
- W3089096168 modified "2023-09-30" @default.
- W3089096168 title "Generalized Additive Mixed Modeling of Longitudinal Tumor Growth Reduces Bias and Improves Decision Making in Translational Oncology" @default.
- W3089096168 cites W1523938605 @default.
- W3089096168 cites W1965237574 @default.
- W3089096168 cites W1968648302 @default.
- W3089096168 cites W1987777080 @default.
- W3089096168 cites W1990453562 @default.
- W3089096168 cites W1994840580 @default.
- W3089096168 cites W1995987937 @default.
- W3089096168 cites W2002113995 @default.
- W3089096168 cites W2012976204 @default.
- W3089096168 cites W2018439279 @default.
- W3089096168 cites W2041287411 @default.
- W3089096168 cites W2058423893 @default.
- W3089096168 cites W2059195185 @default.
- W3089096168 cites W2059493323 @default.
- W3089096168 cites W2082246284 @default.
- W3089096168 cites W2101616608 @default.
- W3089096168 cites W2136738128 @default.
- W3089096168 cites W2140308441 @default.
- W3089096168 cites W2140641091 @default.
- W3089096168 cites W2151521802 @default.
- W3089096168 cites W2160523486 @default.
- W3089096168 cites W2276351974 @default.
- W3089096168 cites W2397387945 @default.
- W3089096168 cites W2479785963 @default.
- W3089096168 cites W2516271598 @default.
- W3089096168 cites W2517175971 @default.
- W3089096168 cites W2563661701 @default.
- W3089096168 cites W2574695762 @default.
- W3089096168 cites W2590028062 @default.
- W3089096168 cites W2744377419 @default.
- W3089096168 cites W2766363222 @default.
- W3089096168 cites W2766455098 @default.
- W3089096168 cites W2766673373 @default.
- W3089096168 cites W2782516324 @default.
- W3089096168 cites W2784650076 @default.
- W3089096168 cites W2917772946 @default.
- W3089096168 cites W2950965282 @default.
- W3089096168 cites W3112717819 @default.
- W3089096168 cites W4296980202 @default.
- W3089096168 cites W2789685538 @default.
- W3089096168 doi "https://doi.org/10.1158/0008-5472.can-20-0342" @default.
- W3089096168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32978171" @default.
- W3089096168 hasPublicationYear "2020" @default.
- W3089096168 type Work @default.
- W3089096168 sameAs 3089096168 @default.
- W3089096168 citedByCount "9" @default.
- W3089096168 countsByYear W30890961682022 @default.
- W3089096168 countsByYear W30890961682023 @default.
- W3089096168 crossrefType "journal-article" @default.
- W3089096168 hasAuthorship W3089096168A5011797129 @default.
- W3089096168 hasAuthorship W3089096168A5024157745 @default.
- W3089096168 hasAuthorship W3089096168A5026893320 @default.
- W3089096168 hasAuthorship W3089096168A5031820960 @default.
- W3089096168 hasAuthorship W3089096168A5032465645 @default.
- W3089096168 hasAuthorship W3089096168A5035711153 @default.
- W3089096168 hasAuthorship W3089096168A5069334941 @default.
- W3089096168 hasAuthorship W3089096168A5077696981 @default.
- W3089096168 hasAuthorship W3089096168A5080833592 @default.
- W3089096168 hasConcept C102366305 @default.
- W3089096168 hasConcept C105795698 @default.
- W3089096168 hasConcept C114289077 @default.
- W3089096168 hasConcept C117251300 @default.
- W3089096168 hasConcept C121332964 @default.
- W3089096168 hasConcept C134306372 @default.
- W3089096168 hasConcept C149782125 @default.
- W3089096168 hasConcept C151376022 @default.
- W3089096168 hasConcept C158622935 @default.
- W3089096168 hasConcept C16012445 @default.
- W3089096168 hasConcept C163175372 @default.
- W3089096168 hasConcept C163716315 @default.
- W3089096168 hasConcept C28826006 @default.
- W3089096168 hasConcept C33923547 @default.
- W3089096168 hasConcept C62520636 @default.
- W3089096168 hasConcept C75235859 @default.
- W3089096168 hasConcept C89128539 @default.
- W3089096168 hasConceptScore W3089096168C102366305 @default.
- W3089096168 hasConceptScore W3089096168C105795698 @default.
- W3089096168 hasConceptScore W3089096168C114289077 @default.
- W3089096168 hasConceptScore W3089096168C117251300 @default.
- W3089096168 hasConceptScore W3089096168C121332964 @default.
- W3089096168 hasConceptScore W3089096168C134306372 @default.
- W3089096168 hasConceptScore W3089096168C149782125 @default.
- W3089096168 hasConceptScore W3089096168C151376022 @default.
- W3089096168 hasConceptScore W3089096168C158622935 @default.