Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089096482> ?p ?o ?g. }
- W3089096482 endingPage "1270" @default.
- W3089096482 startingPage "1246" @default.
- W3089096482 abstract "The detection of environmental violators is critical to the long‐term adoption of sustainability in supply chain management. However, there exist manufacturing facilities that report false environmental monitoring data, thereby seriously hampering governments’ efforts to identify true offenders and to properly intervene. We integrate waste gas data from the world’s largest Continuous Emission Monitoring System (CEMS) with a publicly available Violation and Punishment Dataset (VPD) to build prediction models for the identification of environmental violators. We utilize and create innovative machine learning approaches to overcome analytical challenges associated with empirical data. First, we use a feature engineering approach to generate features from the raw, and possibly fraudulent, reporting data. This overcomes the challenges associated with low fidelity, irregularity, and the presence of extreme values in the raw dataset. Second, while building prediction models, we develop new approaches to positive and unlabeled learning to overcome the challenges posed by sparsity and mislabeled data. Our prediction model achieves satisfactory results in a related field test. Our study develops new techniques for big data analytics, which greatly improve the efficiency and effectiveness in detection of environmental violators and enhance operational outcomes of environmental protection agencies. This research is a joint effort between academia and practitioners, as evidenced by the participation of the Ministry of Ecology and Environment of People’s Republic of China. The Ministry kindly granted us direct data access, as well as opportunities to interview Subject Matter Experts at the Ministry, which led to research insights incorporated in this manuscript. Our research findings have global implications, as CEMS devices are universally adopted to monitor waste gas emissions." @default.
- W3089096482 created "2020-10-01" @default.
- W3089096482 creator A5005122056 @default.
- W3089096482 creator A5007862926 @default.
- W3089096482 creator A5015117667 @default.
- W3089096482 creator A5020635939 @default.
- W3089096482 creator A5068724396 @default.
- W3089096482 date "2020-11-07" @default.
- W3089096482 modified "2023-10-10" @default.
- W3089096482 title "Efficient Detection of Environmental Violators: A Big Data Approach" @default.
- W3089096482 cites W1567491469 @default.
- W3089096482 cites W1622878345 @default.
- W3089096482 cites W1776087634 @default.
- W3089096482 cites W1908132114 @default.
- W3089096482 cites W1961572326 @default.
- W3089096482 cites W1965278510 @default.
- W3089096482 cites W1966188439 @default.
- W3089096482 cites W1968002753 @default.
- W3089096482 cites W1978316151 @default.
- W3089096482 cites W1982032418 @default.
- W3089096482 cites W1982302133 @default.
- W3089096482 cites W1986525510 @default.
- W3089096482 cites W1989240000 @default.
- W3089096482 cites W1998092191 @default.
- W3089096482 cites W2012091922 @default.
- W3089096482 cites W2022465039 @default.
- W3089096482 cites W2024046085 @default.
- W3089096482 cites W2025428542 @default.
- W3089096482 cites W2045984945 @default.
- W3089096482 cites W2048905816 @default.
- W3089096482 cites W2054592136 @default.
- W3089096482 cites W2060349569 @default.
- W3089096482 cites W2061003162 @default.
- W3089096482 cites W2064675550 @default.
- W3089096482 cites W2076298843 @default.
- W3089096482 cites W2077548741 @default.
- W3089096482 cites W2078600369 @default.
- W3089096482 cites W2080731889 @default.
- W3089096482 cites W2082501519 @default.
- W3089096482 cites W2111296615 @default.
- W3089096482 cites W2112031167 @default.
- W3089096482 cites W2117972621 @default.
- W3089096482 cites W2118978333 @default.
- W3089096482 cites W2119428174 @default.
- W3089096482 cites W2123958887 @default.
- W3089096482 cites W2126538342 @default.
- W3089096482 cites W2130486630 @default.
- W3089096482 cites W2133637120 @default.
- W3089096482 cites W2146807976 @default.
- W3089096482 cites W2156364426 @default.
- W3089096482 cites W2165093166 @default.
- W3089096482 cites W2290213882 @default.
- W3089096482 cites W2302800291 @default.
- W3089096482 cites W2328794998 @default.
- W3089096482 cites W2329195817 @default.
- W3089096482 cites W2337400819 @default.
- W3089096482 cites W2342798777 @default.
- W3089096482 cites W2416848540 @default.
- W3089096482 cites W2496041693 @default.
- W3089096482 cites W2518938523 @default.
- W3089096482 cites W2556144780 @default.
- W3089096482 cites W2600888046 @default.
- W3089096482 cites W2611870862 @default.
- W3089096482 cites W2653022485 @default.
- W3089096482 cites W2762414683 @default.
- W3089096482 cites W2769668994 @default.
- W3089096482 cites W2772849600 @default.
- W3089096482 cites W2773476823 @default.
- W3089096482 cites W2776611433 @default.
- W3089096482 cites W2778203760 @default.
- W3089096482 cites W2780508324 @default.
- W3089096482 cites W2789864039 @default.
- W3089096482 cites W2793245599 @default.
- W3089096482 cites W2795296342 @default.
- W3089096482 cites W2802712828 @default.
- W3089096482 cites W2808174724 @default.
- W3089096482 cites W2892034049 @default.
- W3089096482 cites W2892076042 @default.
- W3089096482 cites W2903013308 @default.
- W3089096482 cites W2908151709 @default.
- W3089096482 cites W2915206896 @default.
- W3089096482 cites W2960932332 @default.
- W3089096482 cites W2977332479 @default.
- W3089096482 cites W2983598759 @default.
- W3089096482 cites W3010140118 @default.
- W3089096482 cites W3012573129 @default.
- W3089096482 cites W3101215053 @default.
- W3089096482 cites W3105467701 @default.
- W3089096482 cites W3122021387 @default.
- W3089096482 cites W3123214807 @default.
- W3089096482 cites W3124156515 @default.
- W3089096482 cites W3125238836 @default.
- W3089096482 cites W3125262941 @default.
- W3089096482 cites W3125342939 @default.
- W3089096482 cites W3150796314 @default.
- W3089096482 cites W3206820320 @default.
- W3089096482 cites W49716549 @default.
- W3089096482 doi "https://doi.org/10.1111/poms.13272" @default.