Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089097263> ?p ?o ?g. }
- W3089097263 endingPage "E1348" @default.
- W3089097263 startingPage "E1341" @default.
- W3089097263 abstract "Abstract Background and study aims Colorectal cancers (CRC) with deep submucosal invasion (T1b) could be metastatic lesions. However, endoscopic images of T1b CRC resemble those of mucosal CRCs (Tis) or with superficial invasion (T1a). The aim of this study was to develop an automatic computer-aided diagnosis (CAD) system to identify T1b CRC based on plain endoscopic images. Patients and methods In two hospitals, 1839 non-magnified plain endoscopic images from 313 CRCs (Tis 134, T1a 46, T1b 56, beyond T1b 37) with sessile morphology were extracted for training. A CAD system was trained with the data augmented by rotation, saturation, resizing and exposure adjustment. Diagnostic performance was assessed using another dataset including 44 CRCs (Tis 23, T1b 21) from a third hospital. CAD generated a probability level for T1b diagnosis for each image, and > 95 % of probability level was defined as T1b. Lesions with at least one image with a probability level > 0.95 were regarded as T1b. Primary outcome is specificity. Six physicians separately read the same testing dataset. Results Specificity was 87 % (95 % confidence interval: 66–97) for CAD, 100 % (85–100) for Expert 1, 96 % (78–100) for Expert 2, 61 % (39–80) for both gastroenterology trainees, 48 % (27–69) for Novice 1 and 22 % (7–44) for Novice 2. Significant differences were observed between CAD and both novices (P = 0.013, P = 0.0003). Other diagnostic values of CAD were slightly lower than of the two experts. Conclusions Specificity of CAD was superior to novices and possibly to gastroenterology trainees but slightly inferior to experts." @default.
- W3089097263 created "2020-10-01" @default.
- W3089097263 creator A5001775532 @default.
- W3089097263 creator A5007712143 @default.
- W3089097263 creator A5009502775 @default.
- W3089097263 creator A5017022808 @default.
- W3089097263 creator A5017064782 @default.
- W3089097263 creator A5017999100 @default.
- W3089097263 creator A5021077284 @default.
- W3089097263 creator A5046880206 @default.
- W3089097263 creator A5052935765 @default.
- W3089097263 creator A5053681928 @default.
- W3089097263 creator A5061539510 @default.
- W3089097263 creator A5062040776 @default.
- W3089097263 creator A5063836779 @default.
- W3089097263 creator A5068070892 @default.
- W3089097263 creator A5075080019 @default.
- W3089097263 date "2020-09-22" @default.
- W3089097263 modified "2023-10-10" @default.
- W3089097263 title "Diagnostic performance of artificial intelligence to identify deeply invasive colorectal cancer on non-magnified plain endoscopic images" @default.
- W3089097263 cites W2000956486 @default.
- W3089097263 cites W2026791416 @default.
- W3089097263 cites W2038065536 @default.
- W3089097263 cites W2066197210 @default.
- W3089097263 cites W2067062003 @default.
- W3089097263 cites W2288698772 @default.
- W3089097263 cites W2610398104 @default.
- W3089097263 cites W2782377997 @default.
- W3089097263 cites W2797069348 @default.
- W3089097263 cites W2809596283 @default.
- W3089097263 cites W2885179453 @default.
- W3089097263 cites W2888444739 @default.
- W3089097263 cites W2895090199 @default.
- W3089097263 cites W2909293781 @default.
- W3089097263 cites W2912755548 @default.
- W3089097263 cites W2916105049 @default.
- W3089097263 cites W2930562923 @default.
- W3089097263 cites W3027845133 @default.
- W3089097263 cites W4245045357 @default.
- W3089097263 cites W4248654028 @default.
- W3089097263 doi "https://doi.org/10.1055/a-1220-6596" @default.
- W3089097263 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7508661" @default.
- W3089097263 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33015336" @default.
- W3089097263 hasPublicationYear "2020" @default.
- W3089097263 type Work @default.
- W3089097263 sameAs 3089097263 @default.
- W3089097263 citedByCount "11" @default.
- W3089097263 countsByYear W30890972632021 @default.
- W3089097263 countsByYear W30890972632022 @default.
- W3089097263 countsByYear W30890972632023 @default.
- W3089097263 crossrefType "journal-article" @default.
- W3089097263 hasAuthorship W3089097263A5001775532 @default.
- W3089097263 hasAuthorship W3089097263A5007712143 @default.
- W3089097263 hasAuthorship W3089097263A5009502775 @default.
- W3089097263 hasAuthorship W3089097263A5017022808 @default.
- W3089097263 hasAuthorship W3089097263A5017064782 @default.
- W3089097263 hasAuthorship W3089097263A5017999100 @default.
- W3089097263 hasAuthorship W3089097263A5021077284 @default.
- W3089097263 hasAuthorship W3089097263A5046880206 @default.
- W3089097263 hasAuthorship W3089097263A5052935765 @default.
- W3089097263 hasAuthorship W3089097263A5053681928 @default.
- W3089097263 hasAuthorship W3089097263A5061539510 @default.
- W3089097263 hasAuthorship W3089097263A5062040776 @default.
- W3089097263 hasAuthorship W3089097263A5063836779 @default.
- W3089097263 hasAuthorship W3089097263A5068070892 @default.
- W3089097263 hasAuthorship W3089097263A5075080019 @default.
- W3089097263 hasBestOaLocation W30890972631 @default.
- W3089097263 hasConcept C121608353 @default.
- W3089097263 hasConcept C126322002 @default.
- W3089097263 hasConcept C126838900 @default.
- W3089097263 hasConcept C127413603 @default.
- W3089097263 hasConcept C154945302 @default.
- W3089097263 hasConcept C194789388 @default.
- W3089097263 hasConcept C199639397 @default.
- W3089097263 hasConcept C2778435480 @default.
- W3089097263 hasConcept C2779549770 @default.
- W3089097263 hasConcept C2993160541 @default.
- W3089097263 hasConcept C41008148 @default.
- W3089097263 hasConcept C44249647 @default.
- W3089097263 hasConcept C526805850 @default.
- W3089097263 hasConcept C71924100 @default.
- W3089097263 hasConcept C90924648 @default.
- W3089097263 hasConceptScore W3089097263C121608353 @default.
- W3089097263 hasConceptScore W3089097263C126322002 @default.
- W3089097263 hasConceptScore W3089097263C126838900 @default.
- W3089097263 hasConceptScore W3089097263C127413603 @default.
- W3089097263 hasConceptScore W3089097263C154945302 @default.
- W3089097263 hasConceptScore W3089097263C194789388 @default.
- W3089097263 hasConceptScore W3089097263C199639397 @default.
- W3089097263 hasConceptScore W3089097263C2778435480 @default.
- W3089097263 hasConceptScore W3089097263C2779549770 @default.
- W3089097263 hasConceptScore W3089097263C2993160541 @default.
- W3089097263 hasConceptScore W3089097263C41008148 @default.
- W3089097263 hasConceptScore W3089097263C44249647 @default.
- W3089097263 hasConceptScore W3089097263C526805850 @default.
- W3089097263 hasConceptScore W3089097263C71924100 @default.
- W3089097263 hasConceptScore W3089097263C90924648 @default.
- W3089097263 hasIssue "10" @default.