Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089104025> ?p ?o ?g. }
- W3089104025 endingPage "2688" @default.
- W3089104025 startingPage "2688" @default.
- W3089104025 abstract "Stochastic dynamic programming (SDP) is a widely-used method for reservoir operations optimization under uncertainty but suffers from the dual curses of dimensionality and modeling. Reinforcement learning (RL), a simulation-based stochastic optimization approach, can nullify the curse of modeling that arises from the need for calculating a very large transition probability matrix. RL mitigates the curse of the dimensionality problem, but cannot solve it completely as it remains computationally intensive in complex multi-reservoir systems. This paper presents a multi-agent RL approach combined with an aggregation/decomposition (AD-RL) method for reducing the curse of dimensionality in multi-reservoir operation optimization problems. In this model, each reservoir is individually managed by a specific operator (agent) while co-operating with other agents systematically on finding a near-optimal operating policy for the whole system. Each agent makes a decision (release) based on its current state and the feedback it receives from the states of all upstream and downstream reservoirs. The method, along with an efficient artificial neural network-based robust procedure for the task of tuning Q-learning parameters, has been applied to a real-world five-reservoir problem, i.e., the Parambikulam–Aliyar Project (PAP) in India. We demonstrate that the proposed AD-RL approach helps to derive operating policies that are better than or comparable with the policies obtained by other stochastic optimization methods with less computational burden." @default.
- W3089104025 created "2020-10-01" @default.
- W3089104025 creator A5040247893 @default.
- W3089104025 creator A5048227445 @default.
- W3089104025 creator A5075924060 @default.
- W3089104025 creator A5086032740 @default.
- W3089104025 date "2020-09-25" @default.
- W3089104025 modified "2023-10-18" @default.
- W3089104025 title "Aggregation–Decomposition-Based Multi-Agent Reinforcement Learning for Multi-Reservoir Operations Optimization" @default.
- W3089104025 cites W1508786153 @default.
- W3089104025 cites W1518318201 @default.
- W3089104025 cites W1549534179 @default.
- W3089104025 cites W1635563793 @default.
- W3089104025 cites W1963900753 @default.
- W3089104025 cites W1966630946 @default.
- W3089104025 cites W1967455052 @default.
- W3089104025 cites W1972813808 @default.
- W3089104025 cites W1982214296 @default.
- W3089104025 cites W1993588054 @default.
- W3089104025 cites W1994616650 @default.
- W3089104025 cites W2018720775 @default.
- W3089104025 cites W2019710194 @default.
- W3089104025 cites W2021994706 @default.
- W3089104025 cites W2031440179 @default.
- W3089104025 cites W2047473583 @default.
- W3089104025 cites W2050288270 @default.
- W3089104025 cites W2053834504 @default.
- W3089104025 cites W2060834097 @default.
- W3089104025 cites W2066792530 @default.
- W3089104025 cites W2067794149 @default.
- W3089104025 cites W2069303398 @default.
- W3089104025 cites W2069386244 @default.
- W3089104025 cites W2077373769 @default.
- W3089104025 cites W2077780503 @default.
- W3089104025 cites W2078424060 @default.
- W3089104025 cites W2085115014 @default.
- W3089104025 cites W2095095223 @default.
- W3089104025 cites W2111815180 @default.
- W3089104025 cites W2117842836 @default.
- W3089104025 cites W2118140192 @default.
- W3089104025 cites W2125313557 @default.
- W3089104025 cites W2131198954 @default.
- W3089104025 cites W2132264384 @default.
- W3089104025 cites W2137983211 @default.
- W3089104025 cites W2138045517 @default.
- W3089104025 cites W2140242606 @default.
- W3089104025 cites W2147322969 @default.
- W3089104025 cites W2152768400 @default.
- W3089104025 cites W2494162515 @default.
- W3089104025 cites W2518463964 @default.
- W3089104025 cites W2804907487 @default.
- W3089104025 cites W3005158182 @default.
- W3089104025 cites W32403112 @default.
- W3089104025 doi "https://doi.org/10.3390/w12102688" @default.
- W3089104025 hasPublicationYear "2020" @default.
- W3089104025 type Work @default.
- W3089104025 sameAs 3089104025 @default.
- W3089104025 citedByCount "6" @default.
- W3089104025 countsByYear W30891040252020 @default.
- W3089104025 countsByYear W30891040252022 @default.
- W3089104025 countsByYear W30891040252023 @default.
- W3089104025 crossrefType "journal-article" @default.
- W3089104025 hasAuthorship W3089104025A5040247893 @default.
- W3089104025 hasAuthorship W3089104025A5048227445 @default.
- W3089104025 hasAuthorship W3089104025A5075924060 @default.
- W3089104025 hasAuthorship W3089104025A5086032740 @default.
- W3089104025 hasBestOaLocation W30891040251 @default.
- W3089104025 hasConcept C105795698 @default.
- W3089104025 hasConcept C106189395 @default.
- W3089104025 hasConcept C111030470 @default.
- W3089104025 hasConcept C11413529 @default.
- W3089104025 hasConcept C124681953 @default.
- W3089104025 hasConcept C126255220 @default.
- W3089104025 hasConcept C135796866 @default.
- W3089104025 hasConcept C137631369 @default.
- W3089104025 hasConcept C137836250 @default.
- W3089104025 hasConcept C147168706 @default.
- W3089104025 hasConcept C154945302 @default.
- W3089104025 hasConcept C159886148 @default.
- W3089104025 hasConcept C18903297 @default.
- W3089104025 hasConcept C33923547 @default.
- W3089104025 hasConcept C41008148 @default.
- W3089104025 hasConcept C50644808 @default.
- W3089104025 hasConcept C86803240 @default.
- W3089104025 hasConcept C97541855 @default.
- W3089104025 hasConceptScore W3089104025C105795698 @default.
- W3089104025 hasConceptScore W3089104025C106189395 @default.
- W3089104025 hasConceptScore W3089104025C111030470 @default.
- W3089104025 hasConceptScore W3089104025C11413529 @default.
- W3089104025 hasConceptScore W3089104025C124681953 @default.
- W3089104025 hasConceptScore W3089104025C126255220 @default.
- W3089104025 hasConceptScore W3089104025C135796866 @default.
- W3089104025 hasConceptScore W3089104025C137631369 @default.
- W3089104025 hasConceptScore W3089104025C137836250 @default.
- W3089104025 hasConceptScore W3089104025C147168706 @default.
- W3089104025 hasConceptScore W3089104025C154945302 @default.
- W3089104025 hasConceptScore W3089104025C159886148 @default.
- W3089104025 hasConceptScore W3089104025C18903297 @default.