Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089160717> ?p ?o ?g. }
- W3089160717 endingPage "12" @default.
- W3089160717 startingPage "1" @default.
- W3089160717 abstract "High-precision wind power prediction is important for the planning, economics, and security maintenance of a power grid. Meteorological features and seasonal information are strongly related to wind power prediction. This paper proposes a hybrid method for ultrashort-term wind power prediction considering meteorological features (wind direction, wind speed, temperature, atmospheric pressure, and humidity) and seasonal information. The wind power data are decomposed into stationary subsequences using the ensemble empirical mode decomposition (EEMD). The principal component analysis (PCA) is used to reduce the redundant meteorological features and the algorithm complexity. With the stationary subsequences and extracted meteorological features data as inputs, the long short-term memory (LSTM) network is used to complete the wind power prediction. Finally, the seasonal autoregressive integrated moving average (SARIMA) is innovatively used to fit seasonal features (quarterly and monthly) of wind power and reconstruct the prediction results of LSTM. The proposed method is used to predict 15-minute wind power. In this study, three datasets were collected from a windfarm in Laizhou to validate the prediction performance of the proposed method. The experimental results showed that the prediction accuracy was significantly improved when meteorological features were considered and further improved with seasonal correction." @default.
- W3089160717 created "2020-10-01" @default.
- W3089160717 creator A5014579261 @default.
- W3089160717 creator A5042076295 @default.
- W3089160717 creator A5057218134 @default.
- W3089160717 creator A5072703232 @default.
- W3089160717 creator A5074129173 @default.
- W3089160717 creator A5074953249 @default.
- W3089160717 date "2020-09-28" @default.
- W3089160717 modified "2023-09-25" @default.
- W3089160717 title "A Hybrid Method for Ultrashort-Term Wind Power Prediction considering Meteorological Features and Seasonal Information" @default.
- W3089160717 cites W1982544125 @default.
- W3089160717 cites W1984703120 @default.
- W3089160717 cites W2024692966 @default.
- W3089160717 cites W2039306928 @default.
- W3089160717 cites W2064675550 @default.
- W3089160717 cites W2080798946 @default.
- W3089160717 cites W2098076249 @default.
- W3089160717 cites W2128728535 @default.
- W3089160717 cites W2130663204 @default.
- W3089160717 cites W2271954662 @default.
- W3089160717 cites W2294198843 @default.
- W3089160717 cites W2487967714 @default.
- W3089160717 cites W2516897868 @default.
- W3089160717 cites W2626166063 @default.
- W3089160717 cites W2733822397 @default.
- W3089160717 cites W2737765213 @default.
- W3089160717 cites W2792244305 @default.
- W3089160717 cites W2806590003 @default.
- W3089160717 cites W2888883870 @default.
- W3089160717 cites W2895135437 @default.
- W3089160717 cites W2896920734 @default.
- W3089160717 cites W2905238323 @default.
- W3089160717 cites W2920873814 @default.
- W3089160717 cites W2920974156 @default.
- W3089160717 cites W2922709255 @default.
- W3089160717 cites W2951718257 @default.
- W3089160717 cites W2977330618 @default.
- W3089160717 cites W3014736706 @default.
- W3089160717 cites W932149350 @default.
- W3089160717 doi "https://doi.org/10.1155/2020/1795486" @default.
- W3089160717 hasPublicationYear "2020" @default.
- W3089160717 type Work @default.
- W3089160717 sameAs 3089160717 @default.
- W3089160717 citedByCount "5" @default.
- W3089160717 countsByYear W30891607172021 @default.
- W3089160717 countsByYear W30891607172022 @default.
- W3089160717 countsByYear W30891607172023 @default.
- W3089160717 crossrefType "journal-article" @default.
- W3089160717 hasAuthorship W3089160717A5014579261 @default.
- W3089160717 hasAuthorship W3089160717A5042076295 @default.
- W3089160717 hasAuthorship W3089160717A5057218134 @default.
- W3089160717 hasAuthorship W3089160717A5072703232 @default.
- W3089160717 hasAuthorship W3089160717A5074129173 @default.
- W3089160717 hasAuthorship W3089160717A5074953249 @default.
- W3089160717 hasBestOaLocation W30891607171 @default.
- W3089160717 hasConcept C105795698 @default.
- W3089160717 hasConcept C106131492 @default.
- W3089160717 hasConcept C111919701 @default.
- W3089160717 hasConcept C119599485 @default.
- W3089160717 hasConcept C121332964 @default.
- W3089160717 hasConcept C124101348 @default.
- W3089160717 hasConcept C127413603 @default.
- W3089160717 hasConcept C153294291 @default.
- W3089160717 hasConcept C159877910 @default.
- W3089160717 hasConcept C161067210 @default.
- W3089160717 hasConcept C163258240 @default.
- W3089160717 hasConcept C205649164 @default.
- W3089160717 hasConcept C25570617 @default.
- W3089160717 hasConcept C2781084341 @default.
- W3089160717 hasConcept C31972630 @default.
- W3089160717 hasConcept C33923547 @default.
- W3089160717 hasConcept C39432304 @default.
- W3089160717 hasConcept C41008148 @default.
- W3089160717 hasConcept C48677424 @default.
- W3089160717 hasConcept C61797465 @default.
- W3089160717 hasConcept C62520636 @default.
- W3089160717 hasConcept C78600449 @default.
- W3089160717 hasConcept C89227174 @default.
- W3089160717 hasConceptScore W3089160717C105795698 @default.
- W3089160717 hasConceptScore W3089160717C106131492 @default.
- W3089160717 hasConceptScore W3089160717C111919701 @default.
- W3089160717 hasConceptScore W3089160717C119599485 @default.
- W3089160717 hasConceptScore W3089160717C121332964 @default.
- W3089160717 hasConceptScore W3089160717C124101348 @default.
- W3089160717 hasConceptScore W3089160717C127413603 @default.
- W3089160717 hasConceptScore W3089160717C153294291 @default.
- W3089160717 hasConceptScore W3089160717C159877910 @default.
- W3089160717 hasConceptScore W3089160717C161067210 @default.
- W3089160717 hasConceptScore W3089160717C163258240 @default.
- W3089160717 hasConceptScore W3089160717C205649164 @default.
- W3089160717 hasConceptScore W3089160717C25570617 @default.
- W3089160717 hasConceptScore W3089160717C2781084341 @default.
- W3089160717 hasConceptScore W3089160717C31972630 @default.
- W3089160717 hasConceptScore W3089160717C33923547 @default.
- W3089160717 hasConceptScore W3089160717C39432304 @default.
- W3089160717 hasConceptScore W3089160717C41008148 @default.
- W3089160717 hasConceptScore W3089160717C48677424 @default.