Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089164038> ?p ?o ?g. }
- W3089164038 abstract "Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in $^{136}$Xe. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6-MeV gamma rays from a $^{228}$Th calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offer significant improvement in signal efficiency/background rejection when compared to previous non-CNN-based analyses." @default.
- W3089164038 created "2020-10-01" @default.
- W3089164038 creator A5001182762 @default.
- W3089164038 creator A5001269506 @default.
- W3089164038 creator A5001521877 @default.
- W3089164038 creator A5001659361 @default.
- W3089164038 creator A5002512769 @default.
- W3089164038 creator A5003657690 @default.
- W3089164038 creator A5004800501 @default.
- W3089164038 creator A5005118058 @default.
- W3089164038 creator A5007278198 @default.
- W3089164038 creator A5007473123 @default.
- W3089164038 creator A5007710544 @default.
- W3089164038 creator A5008298415 @default.
- W3089164038 creator A5008429996 @default.
- W3089164038 creator A5008763347 @default.
- W3089164038 creator A5009420489 @default.
- W3089164038 creator A5009467472 @default.
- W3089164038 creator A5009480582 @default.
- W3089164038 creator A5009785009 @default.
- W3089164038 creator A5009797007 @default.
- W3089164038 creator A5010120848 @default.
- W3089164038 creator A5010842038 @default.
- W3089164038 creator A5012398574 @default.
- W3089164038 creator A5012700037 @default.
- W3089164038 creator A5012990874 @default.
- W3089164038 creator A5014243002 @default.
- W3089164038 creator A5015456712 @default.
- W3089164038 creator A5021653971 @default.
- W3089164038 creator A5022377417 @default.
- W3089164038 creator A5025035548 @default.
- W3089164038 creator A5025857343 @default.
- W3089164038 creator A5026033844 @default.
- W3089164038 creator A5027744665 @default.
- W3089164038 creator A5028821364 @default.
- W3089164038 creator A5030845503 @default.
- W3089164038 creator A5031454143 @default.
- W3089164038 creator A5032740805 @default.
- W3089164038 creator A5033780359 @default.
- W3089164038 creator A5035166049 @default.
- W3089164038 creator A5035237004 @default.
- W3089164038 creator A5035561783 @default.
- W3089164038 creator A5035843302 @default.
- W3089164038 creator A5035946229 @default.
- W3089164038 creator A5036019376 @default.
- W3089164038 creator A5036714197 @default.
- W3089164038 creator A5037135226 @default.
- W3089164038 creator A5038454332 @default.
- W3089164038 creator A5038955708 @default.
- W3089164038 creator A5039235244 @default.
- W3089164038 creator A5042555850 @default.
- W3089164038 creator A5045153926 @default.
- W3089164038 creator A5045862033 @default.
- W3089164038 creator A5047179614 @default.
- W3089164038 creator A5047374093 @default.
- W3089164038 creator A5048958631 @default.
- W3089164038 creator A5050508909 @default.
- W3089164038 creator A5050817671 @default.
- W3089164038 creator A5052271084 @default.
- W3089164038 creator A5052576412 @default.
- W3089164038 creator A5054359762 @default.
- W3089164038 creator A5054669058 @default.
- W3089164038 creator A5056764794 @default.
- W3089164038 creator A5057474056 @default.
- W3089164038 creator A5058359050 @default.
- W3089164038 creator A5061161417 @default.
- W3089164038 creator A5062758382 @default.
- W3089164038 creator A5064293959 @default.
- W3089164038 creator A5065029083 @default.
- W3089164038 creator A5065701560 @default.
- W3089164038 creator A5065738114 @default.
- W3089164038 creator A5066435196 @default.
- W3089164038 creator A5069390792 @default.
- W3089164038 creator A5069883965 @default.
- W3089164038 creator A5071213833 @default.
- W3089164038 creator A5072953421 @default.
- W3089164038 creator A5072963231 @default.
- W3089164038 creator A5074377388 @default.
- W3089164038 creator A5074647828 @default.
- W3089164038 creator A5077375238 @default.
- W3089164038 creator A5079453510 @default.
- W3089164038 creator A5080142061 @default.
- W3089164038 creator A5080941385 @default.
- W3089164038 creator A5080963329 @default.
- W3089164038 creator A5081121606 @default.
- W3089164038 creator A5081964395 @default.
- W3089164038 creator A5083368400 @default.
- W3089164038 creator A5083864549 @default.
- W3089164038 creator A5086022247 @default.
- W3089164038 creator A5091298335 @default.
- W3089164038 creator A5091489088 @default.
- W3089164038 creator A5091789695 @default.
- W3089164038 date "2021-01-01" @default.
- W3089164038 modified "2023-10-17" @default.
- W3089164038 title "Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment" @default.
- W3089164038 cites W2081101805 @default.
- W3089164038 cites W2083252561 @default.
- W3089164038 cites W2108598243 @default.
- W3089164038 cites W2128158076 @default.
- W3089164038 cites W2339008828 @default.