Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089181552> ?p ?o ?g. }
- W3089181552 abstract "An ion trap is one of the most promising candidates for quantum computing. Current schemes mainly focus on a linear chain of up to about 100 ions in a Paul trap. To further scale up the qubit number, one possible direction is to use 2D or 3D ion crystals (Wigner crystals). In these systems, ions are generally subjected to large micromotion due to the strong fast-oscillating electric field, which can significantly influence the performance of entangling gates. In this paper, we develop an efficient numerical method to design high-fidelity entangling gates in a general 3D ion crystal. We present numerical algorithms to solve the equilibrium configuration of the ions and their collective normal modes. We then give a mathematical description of the micromotion and use it to generalize the gate scheme for linear ion chains into a general 3D crystal. The involved time integral of highly oscillatory functions is expanded into a fast-converging series for accurate and efficient evaluation and optimization. As a numerical example, we show a high-fidelity entangling gate design between two ions in a 100-ion crystal, with a theoretical fidelity above 99.9%." @default.
- W3089181552 created "2020-10-01" @default.
- W3089181552 creator A5017858238 @default.
- W3089181552 creator A5028052628 @default.
- W3089181552 creator A5063417373 @default.
- W3089181552 creator A5084317633 @default.
- W3089181552 date "2021-02-19" @default.
- W3089181552 modified "2023-09-27" @default.
- W3089181552 title "High-fidelity entangling gates in a three-dimensional ion crystal under micromotion" @default.
- W3089181552 cites W1607705556 @default.
- W3089181552 cites W1635919617 @default.
- W3089181552 cites W1845688715 @default.
- W3089181552 cites W1960584328 @default.
- W3089181552 cites W1965894106 @default.
- W3089181552 cites W1966880752 @default.
- W3089181552 cites W1972637202 @default.
- W3089181552 cites W1972868664 @default.
- W3089181552 cites W1990589285 @default.
- W3089181552 cites W1995672555 @default.
- W3089181552 cites W1997398716 @default.
- W3089181552 cites W1998415019 @default.
- W3089181552 cites W1999664967 @default.
- W3089181552 cites W2006629320 @default.
- W3089181552 cites W2009179285 @default.
- W3089181552 cites W2020409647 @default.
- W3089181552 cites W2024122381 @default.
- W3089181552 cites W2024543013 @default.
- W3089181552 cites W2039151882 @default.
- W3089181552 cites W2043500043 @default.
- W3089181552 cites W2061085975 @default.
- W3089181552 cites W2067763535 @default.
- W3089181552 cites W2068938156 @default.
- W3089181552 cites W2074117827 @default.
- W3089181552 cites W2084661371 @default.
- W3089181552 cites W2090433716 @default.
- W3089181552 cites W2093475321 @default.
- W3089181552 cites W2106720685 @default.
- W3089181552 cites W2163077582 @default.
- W3089181552 cites W2170552382 @default.
- W3089181552 cites W2209650504 @default.
- W3089181552 cites W2257937122 @default.
- W3089181552 cites W2343550464 @default.
- W3089181552 cites W2468792555 @default.
- W3089181552 cites W2593972252 @default.
- W3089181552 cites W2613824283 @default.
- W3089181552 cites W2751433475 @default.
- W3089181552 cites W2786023959 @default.
- W3089181552 cites W2804990151 @default.
- W3089181552 cites W2885128341 @default.
- W3089181552 cites W3037443854 @default.
- W3089181552 cites W3099164878 @default.
- W3089181552 cites W3102799395 @default.
- W3089181552 cites W3104413349 @default.
- W3089181552 cites W3105982350 @default.
- W3089181552 cites W3106493904 @default.
- W3089181552 cites W4236316076 @default.
- W3089181552 doi "https://doi.org/10.1103/physreva.103.022419" @default.
- W3089181552 hasPublicationYear "2021" @default.
- W3089181552 type Work @default.
- W3089181552 sameAs 3089181552 @default.
- W3089181552 citedByCount "5" @default.
- W3089181552 countsByYear W30891815522021 @default.
- W3089181552 countsByYear W30891815522023 @default.
- W3089181552 crossrefType "journal-article" @default.
- W3089181552 hasAuthorship W3089181552A5017858238 @default.
- W3089181552 hasAuthorship W3089181552A5028052628 @default.
- W3089181552 hasAuthorship W3089181552A5063417373 @default.
- W3089181552 hasAuthorship W3089181552A5084317633 @default.
- W3089181552 hasBestOaLocation W30891815522 @default.
- W3089181552 hasConcept C106289968 @default.
- W3089181552 hasConcept C121332964 @default.
- W3089181552 hasConcept C121864883 @default.
- W3089181552 hasConcept C145148216 @default.
- W3089181552 hasConcept C199360897 @default.
- W3089181552 hasConcept C203087015 @default.
- W3089181552 hasConcept C2776459999 @default.
- W3089181552 hasConcept C2781285689 @default.
- W3089181552 hasConcept C30475298 @default.
- W3089181552 hasConcept C41008148 @default.
- W3089181552 hasConcept C58053490 @default.
- W3089181552 hasConcept C62520636 @default.
- W3089181552 hasConcept C76155785 @default.
- W3089181552 hasConcept C84114770 @default.
- W3089181552 hasConceptScore W3089181552C106289968 @default.
- W3089181552 hasConceptScore W3089181552C121332964 @default.
- W3089181552 hasConceptScore W3089181552C121864883 @default.
- W3089181552 hasConceptScore W3089181552C145148216 @default.
- W3089181552 hasConceptScore W3089181552C199360897 @default.
- W3089181552 hasConceptScore W3089181552C203087015 @default.
- W3089181552 hasConceptScore W3089181552C2776459999 @default.
- W3089181552 hasConceptScore W3089181552C2781285689 @default.
- W3089181552 hasConceptScore W3089181552C30475298 @default.
- W3089181552 hasConceptScore W3089181552C41008148 @default.
- W3089181552 hasConceptScore W3089181552C58053490 @default.
- W3089181552 hasConceptScore W3089181552C62520636 @default.
- W3089181552 hasConceptScore W3089181552C76155785 @default.
- W3089181552 hasConceptScore W3089181552C84114770 @default.
- W3089181552 hasFunder F4320335777 @default.
- W3089181552 hasIssue "2" @default.
- W3089181552 hasLocation W30891815521 @default.