Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089188370> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3089188370 abstract "Abstract Automated Gleason grading can be a valuable tool for physicians when assessing risk and planning treatment for prostate cancer patients. Semantic segmentation provides pixel-wise Gleason predictions across an entire slide, which can be more informative than classification of pre-selected homogeneous regions. Deep learning methods can automatically learn visual semantics to accomplish this task, but training models on whole slides is impractical due to large image sizes and scarcity of fully annotated data. Patch-based methods can alleviate these problems, and have been shown to produce significant results in histopathology segmentation. However, the irregular contours of biopsies on slides makes performance highly dependent on patch selection. In the traditional grid-based strategy, many patches lie on biopsy boundaries, reducing segmentation accuracy due to a reduction in contextual information. In this paper, we propose an automatic patch selection process based on image features. This algorithm segments the biopsy and aligns patches based on the tissue contour to maximize the amount of contextual information in each patch. This method was used to generate patches for a fully convolutional network to segment high grade, low grade, and benign tissue from a set of 59 histopathological slides, and results were compared against manual physician labels. We show that using our image-based patch selection algorithm results in a significant improvement in segmentation accuracy over the traditional grid-based approach. Our results suggest that informed patch selection can be a valuable addition to an automated histopathological analysis pipeline." @default.
- W3089188370 created "2020-10-01" @default.
- W3089188370 creator A5001751044 @default.
- W3089188370 creator A5003259313 @default.
- W3089188370 creator A5021036637 @default.
- W3089188370 creator A5027341812 @default.
- W3089188370 creator A5029456122 @default.
- W3089188370 date "2020-09-26" @default.
- W3089188370 modified "2023-10-16" @default.
- W3089188370 title "Image-based patch selection for deep learning to improve automated Gleason grading in histopathological slides" @default.
- W3089188370 cites W2016053056 @default.
- W3089188370 cites W2121655616 @default.
- W3089188370 cites W2129112648 @default.
- W3089188370 cites W2194775991 @default.
- W3089188370 cites W2235523093 @default.
- W3089188370 cites W2916323829 @default.
- W3089188370 cites W2919115771 @default.
- W3089188370 doi "https://doi.org/10.1101/2020.09.26.314989" @default.
- W3089188370 hasPublicationYear "2020" @default.
- W3089188370 type Work @default.
- W3089188370 sameAs 3089188370 @default.
- W3089188370 citedByCount "0" @default.
- W3089188370 crossrefType "posted-content" @default.
- W3089188370 hasAuthorship W3089188370A5001751044 @default.
- W3089188370 hasAuthorship W3089188370A5003259313 @default.
- W3089188370 hasAuthorship W3089188370A5021036637 @default.
- W3089188370 hasAuthorship W3089188370A5027341812 @default.
- W3089188370 hasAuthorship W3089188370A5029456122 @default.
- W3089188370 hasBestOaLocation W30891883701 @default.
- W3089188370 hasConcept C108583219 @default.
- W3089188370 hasConcept C119857082 @default.
- W3089188370 hasConcept C127413603 @default.
- W3089188370 hasConcept C147176958 @default.
- W3089188370 hasConcept C153180895 @default.
- W3089188370 hasConcept C154945302 @default.
- W3089188370 hasConcept C187691185 @default.
- W3089188370 hasConcept C2524010 @default.
- W3089188370 hasConcept C2777286243 @default.
- W3089188370 hasConcept C33923547 @default.
- W3089188370 hasConcept C41008148 @default.
- W3089188370 hasConcept C89600930 @default.
- W3089188370 hasConceptScore W3089188370C108583219 @default.
- W3089188370 hasConceptScore W3089188370C119857082 @default.
- W3089188370 hasConceptScore W3089188370C127413603 @default.
- W3089188370 hasConceptScore W3089188370C147176958 @default.
- W3089188370 hasConceptScore W3089188370C153180895 @default.
- W3089188370 hasConceptScore W3089188370C154945302 @default.
- W3089188370 hasConceptScore W3089188370C187691185 @default.
- W3089188370 hasConceptScore W3089188370C2524010 @default.
- W3089188370 hasConceptScore W3089188370C2777286243 @default.
- W3089188370 hasConceptScore W3089188370C33923547 @default.
- W3089188370 hasConceptScore W3089188370C41008148 @default.
- W3089188370 hasConceptScore W3089188370C89600930 @default.
- W3089188370 hasLocation W30891883701 @default.
- W3089188370 hasOpenAccess W3089188370 @default.
- W3089188370 hasPrimaryLocation W30891883701 @default.
- W3089188370 hasRelatedWork W10101583 @default.
- W3089188370 hasRelatedWork W11122729 @default.
- W3089188370 hasRelatedWork W14128562 @default.
- W3089188370 hasRelatedWork W1446482 @default.
- W3089188370 hasRelatedWork W2366400 @default.
- W3089188370 hasRelatedWork W274842 @default.
- W3089188370 hasRelatedWork W4412456 @default.
- W3089188370 hasRelatedWork W4771408 @default.
- W3089188370 hasRelatedWork W9082009 @default.
- W3089188370 hasRelatedWork W9952751 @default.
- W3089188370 isParatext "false" @default.
- W3089188370 isRetracted "false" @default.
- W3089188370 magId "3089188370" @default.
- W3089188370 workType "article" @default.