Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089208575> ?p ?o ?g. }
- W3089208575 endingPage "5551" @default.
- W3089208575 startingPage "5551" @default.
- W3089208575 abstract "The successful launch of the Sentinel-2 constellation satellite, along with advanced cloud detection algorithms, has enabled the generation of continuous time series at high spatial and temporal resolutions, which is in turn expected to enable the classification of salt marsh vegetation over larger spatiotemporal scales. This study presents a critical comparison of vegetation index (VI) and curve fitting methods—two key factors for time series construction that potentially influence vegetation classification performance. To accomplish this objective, the stability of five different VI time series, namely Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), Green Normalized Difference Vegetation Index (GNDVI), and Water-Adjusted Vegetation Index (WAVI), was compared empirically; the suitability between three curve fitting methods, namely Asymmetric Gaussian (AG), Double Logistic (DL), and Two-term Fourier (TF), and VI time series was measured using the coefficient of determination, and the salt marsh vegetation separability among different combinations of VI time series and curve fitting methods (i.e., VI time series-based curve fitting model) was quantified using overall the Jeffries–Matusita distance. Six common types of salt marsh vegetation from three typical coastal sites in China were used to validate these findings, which demonstrate: (1) the SAVI performed best in terms of time series stability, while the EVI exhibited relatively poor time series stability with conspicuous outliers induced by the sensitivity to omitted clouds and shadows; (2) the DL method commonly resulted in the most accurate classification of different salt marsh vegetation types, especially when combined with the EVI time series, followed by the TF method; and (3) the SAVI/NDVI-based DL/TF model demonstrated comparable efficiency for classifying salt marsh vegetation. Notably, the SAVI/NDVI-based DL model performed most strongly for high latitude regions with a continental climate, whilst the SAVI/NDVI-based TF model appears to be better suited to mid- to low latitude regions dominated by a monsoonal climate." @default.
- W3089208575 created "2020-10-01" @default.
- W3089208575 creator A5007408091 @default.
- W3089208575 creator A5009074414 @default.
- W3089208575 creator A5027123416 @default.
- W3089208575 creator A5038421653 @default.
- W3089208575 creator A5046321752 @default.
- W3089208575 creator A5051347413 @default.
- W3089208575 date "2020-09-28" @default.
- W3089208575 modified "2023-10-16" @default.
- W3089208575 title "Evaluation of Vegetation Index-Based Curve Fitting Models for Accurate Classification of Salt Marsh Vegetation Using Sentinel-2 Time-Series" @default.
- W3089208575 cites W1892914854 @default.
- W3089208575 cites W1934552780 @default.
- W3089208575 cites W1964217023 @default.
- W3089208575 cites W1970475948 @default.
- W3089208575 cites W1980319608 @default.
- W3089208575 cites W1984667420 @default.
- W3089208575 cites W1986997949 @default.
- W3089208575 cites W1993183238 @default.
- W3089208575 cites W1996905547 @default.
- W3089208575 cites W2013211152 @default.
- W3089208575 cites W2016948742 @default.
- W3089208575 cites W2025745000 @default.
- W3089208575 cites W2027652188 @default.
- W3089208575 cites W2030864384 @default.
- W3089208575 cites W2039604550 @default.
- W3089208575 cites W2047716281 @default.
- W3089208575 cites W2053582350 @default.
- W3089208575 cites W2055571567 @default.
- W3089208575 cites W2056231211 @default.
- W3089208575 cites W2056435747 @default.
- W3089208575 cites W2069089944 @default.
- W3089208575 cites W2072093516 @default.
- W3089208575 cites W2083710447 @default.
- W3089208575 cites W2086645298 @default.
- W3089208575 cites W2104301422 @default.
- W3089208575 cites W2104896032 @default.
- W3089208575 cites W2113503197 @default.
- W3089208575 cites W2121144771 @default.
- W3089208575 cites W2126154792 @default.
- W3089208575 cites W2126250722 @default.
- W3089208575 cites W2144865930 @default.
- W3089208575 cites W2151011640 @default.
- W3089208575 cites W2318802957 @default.
- W3089208575 cites W2412175885 @default.
- W3089208575 cites W2593491678 @default.
- W3089208575 cites W2653148934 @default.
- W3089208575 cites W2753706553 @default.
- W3089208575 cites W2760858574 @default.
- W3089208575 cites W2794396966 @default.
- W3089208575 cites W2884352191 @default.
- W3089208575 cites W2887185672 @default.
- W3089208575 cites W2890523706 @default.
- W3089208575 cites W2921398857 @default.
- W3089208575 cites W2922152173 @default.
- W3089208575 cites W2922237835 @default.
- W3089208575 cites W2947016329 @default.
- W3089208575 cites W2951879154 @default.
- W3089208575 cites W2990259822 @default.
- W3089208575 cites W2991271608 @default.
- W3089208575 cites W3006866732 @default.
- W3089208575 cites W3020062118 @default.
- W3089208575 doi "https://doi.org/10.3390/s20195551" @default.
- W3089208575 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7582664" @default.
- W3089208575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32998319" @default.
- W3089208575 hasPublicationYear "2020" @default.
- W3089208575 type Work @default.
- W3089208575 sameAs 3089208575 @default.
- W3089208575 citedByCount "10" @default.
- W3089208575 countsByYear W30892085752021 @default.
- W3089208575 countsByYear W30892085752022 @default.
- W3089208575 countsByYear W30892085752023 @default.
- W3089208575 crossrefType "journal-article" @default.
- W3089208575 hasAuthorship W3089208575A5007408091 @default.
- W3089208575 hasAuthorship W3089208575A5009074414 @default.
- W3089208575 hasAuthorship W3089208575A5027123416 @default.
- W3089208575 hasAuthorship W3089208575A5038421653 @default.
- W3089208575 hasAuthorship W3089208575A5046321752 @default.
- W3089208575 hasAuthorship W3089208575A5051347413 @default.
- W3089208575 hasBestOaLocation W30892085751 @default.
- W3089208575 hasConcept C105795698 @default.
- W3089208575 hasConcept C111368507 @default.
- W3089208575 hasConcept C112972136 @default.
- W3089208575 hasConcept C119857082 @default.
- W3089208575 hasConcept C127313418 @default.
- W3089208575 hasConcept C132651083 @default.
- W3089208575 hasConcept C142724271 @default.
- W3089208575 hasConcept C143724316 @default.
- W3089208575 hasConcept C151406439 @default.
- W3089208575 hasConcept C151730666 @default.
- W3089208575 hasConcept C1549246 @default.
- W3089208575 hasConcept C2776133958 @default.
- W3089208575 hasConcept C2780376076 @default.
- W3089208575 hasConcept C33923547 @default.
- W3089208575 hasConcept C39432304 @default.
- W3089208575 hasConcept C41008148 @default.
- W3089208575 hasConcept C62649853 @default.
- W3089208575 hasConcept C71924100 @default.