Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089211103> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3089211103 endingPage "3061" @default.
- W3089211103 startingPage "3053" @default.
- W3089211103 abstract "The whole image has plenty amount of pixels, but only a small amount of pixels are essential and those only required to be separate out. In image processing, feature extraction is a special technique for dimension reduction. Transforming the input data into a small and meaningful set of features is called feature extraction. If the features extraction process is carefully chosen then it is expected that the feature set will find the relevant information from the input image in order to perform the desired task using the reduced formation of features instead of the full size input image. In machine learning, pattern recognition and in image processing, feature extraction starts from an initial set of measured data and builds derived values (features) intended to be informative and non-redundant, facilitating the subsequent learning and generalization steps, and in some cases leading to better human interpretations. As a human being one can better understand the reduced feature set instead of the whole image. The paper presents total thirteen texture related features like: Contrast, Correlation, Energy, Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis and Skewness. These texture features extracted by using four leaf disease segmentation techniques and they are: Segmentation with RGB and HSI, K--Means Clustering Algorithm, Segmentation by Different Transformation and Segmentation by RGB, HIS and Contrast respectively. Finally the extracted features applied to neural network with three training functions and results analyzed. The paper compares the benefits and limitations of these potential methods." @default.
- W3089211103 created "2020-10-01" @default.
- W3089211103 creator A5031418424 @default.
- W3089211103 creator A5078883777 @default.
- W3089211103 creator A5091735162 @default.
- W3089211103 date "2018-01-01" @default.
- W3089211103 modified "2023-09-26" @default.
- W3089211103 title "Classification of citrus leaf diseases by image processing based on texture (Statistical) related features" @default.
- W3089211103 hasPublicationYear "2018" @default.
- W3089211103 type Work @default.
- W3089211103 sameAs 3089211103 @default.
- W3089211103 citedByCount "0" @default.
- W3089211103 crossrefType "journal-article" @default.
- W3089211103 hasAuthorship W3089211103A5031418424 @default.
- W3089211103 hasAuthorship W3089211103A5078883777 @default.
- W3089211103 hasAuthorship W3089211103A5091735162 @default.
- W3089211103 hasConcept C105795698 @default.
- W3089211103 hasConcept C115961682 @default.
- W3089211103 hasConcept C122342681 @default.
- W3089211103 hasConcept C124504099 @default.
- W3089211103 hasConcept C153180895 @default.
- W3089211103 hasConcept C154945302 @default.
- W3089211103 hasConcept C160633673 @default.
- W3089211103 hasConcept C166963901 @default.
- W3089211103 hasConcept C31972630 @default.
- W3089211103 hasConcept C33923547 @default.
- W3089211103 hasConcept C41008148 @default.
- W3089211103 hasConcept C52622490 @default.
- W3089211103 hasConcept C63099799 @default.
- W3089211103 hasConcept C82990744 @default.
- W3089211103 hasConcept C89600930 @default.
- W3089211103 hasConcept C9417928 @default.
- W3089211103 hasConceptScore W3089211103C105795698 @default.
- W3089211103 hasConceptScore W3089211103C115961682 @default.
- W3089211103 hasConceptScore W3089211103C122342681 @default.
- W3089211103 hasConceptScore W3089211103C124504099 @default.
- W3089211103 hasConceptScore W3089211103C153180895 @default.
- W3089211103 hasConceptScore W3089211103C154945302 @default.
- W3089211103 hasConceptScore W3089211103C160633673 @default.
- W3089211103 hasConceptScore W3089211103C166963901 @default.
- W3089211103 hasConceptScore W3089211103C31972630 @default.
- W3089211103 hasConceptScore W3089211103C33923547 @default.
- W3089211103 hasConceptScore W3089211103C41008148 @default.
- W3089211103 hasConceptScore W3089211103C52622490 @default.
- W3089211103 hasConceptScore W3089211103C63099799 @default.
- W3089211103 hasConceptScore W3089211103C82990744 @default.
- W3089211103 hasConceptScore W3089211103C89600930 @default.
- W3089211103 hasConceptScore W3089211103C9417928 @default.
- W3089211103 hasIssue "5" @default.
- W3089211103 hasLocation W30892111031 @default.
- W3089211103 hasOpenAccess W3089211103 @default.
- W3089211103 hasPrimaryLocation W30892111031 @default.
- W3089211103 hasRelatedWork W1971849904 @default.
- W3089211103 hasRelatedWork W1993014659 @default.
- W3089211103 hasRelatedWork W2041525275 @default.
- W3089211103 hasRelatedWork W2092756435 @default.
- W3089211103 hasRelatedWork W2109655869 @default.
- W3089211103 hasRelatedWork W2173628450 @default.
- W3089211103 hasRelatedWork W2390696399 @default.
- W3089211103 hasRelatedWork W2547974557 @default.
- W3089211103 hasRelatedWork W2581604282 @default.
- W3089211103 hasRelatedWork W2789845179 @default.
- W3089211103 hasRelatedWork W2790746897 @default.
- W3089211103 hasRelatedWork W2799196941 @default.
- W3089211103 hasRelatedWork W2807574695 @default.
- W3089211103 hasRelatedWork W2894058049 @default.
- W3089211103 hasRelatedWork W2942552141 @default.
- W3089211103 hasRelatedWork W3020072390 @default.
- W3089211103 hasRelatedWork W3110178639 @default.
- W3089211103 hasRelatedWork W3204757516 @default.
- W3089211103 hasRelatedWork W933916840 @default.
- W3089211103 hasRelatedWork W2181392377 @default.
- W3089211103 hasVolume "6" @default.
- W3089211103 isParatext "false" @default.
- W3089211103 isRetracted "false" @default.
- W3089211103 magId "3089211103" @default.
- W3089211103 workType "article" @default.