Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089215229> ?p ?o ?g. }
- W3089215229 endingPage "108474" @default.
- W3089215229 startingPage "108474" @default.
- W3089215229 abstract "Abstract Determining the type of flow pattern and gas volumetric percentage with high precision is one of the vital topics for researchers in this field. For this, in this paper, three different types of liquid–gas two-phase flow regimes, namely annular, stratified, and homogenous were simulated in various gas volumetric percentages ranging from 5% to 90%. Simulations were performed by Monte Carlo N Particle (MCNP) code. Metering system includes one 137Cs sources, one Pyrex glass, and two NaI detectors to register the transmitted photons. Because the signals which are received from the MCNP simulations contain high-frequency noises, the Savitzky-Golay filter has been applied to solve this problem. Then, thirteen characteristics in time domain were extracted from the recorded data of both detectors. Since none of features were capable of completely separating the flow regimes, two methods as “extracting two different features from the recorded data of both detectors” and “extracting three features from the recorded data of both detectors” were proposed. Using these methods, many different separator cases were found and the best separator cases were distinguished via S parameter. Finally, two artificial neural network (ANN) models of multilayer perceptron (MLP) were implemented for each method to identify the flow regimes and approximate the gas volumetric percentages. The proposed methodology and networks could diagnose all flow patterns properly, and also predict the volumetric percentage with a root mean square error (RMSE) of less than 0.60. Increasing the precision of two-phase flow meter by extracting time-domain features and signal processing techniques is the most important advantage of this study." @default.
- W3089215229 created "2020-10-01" @default.
- W3089215229 creator A5034166910 @default.
- W3089215229 creator A5044358049 @default.
- W3089215229 creator A5045129644 @default.
- W3089215229 creator A5067294377 @default.
- W3089215229 date "2021-01-01" @default.
- W3089215229 modified "2023-10-17" @default.
- W3089215229 title "Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique" @default.
- W3089215229 cites W1972219165 @default.
- W3089215229 cites W2013672173 @default.
- W3089215229 cites W2023630074 @default.
- W3089215229 cites W2034502394 @default.
- W3089215229 cites W2039681904 @default.
- W3089215229 cites W2078269649 @default.
- W3089215229 cites W2109606373 @default.
- W3089215229 cites W2172414120 @default.
- W3089215229 cites W2320950607 @default.
- W3089215229 cites W2329042888 @default.
- W3089215229 cites W2414472952 @default.
- W3089215229 cites W2495506792 @default.
- W3089215229 cites W2564194003 @default.
- W3089215229 cites W2613681301 @default.
- W3089215229 cites W2767386775 @default.
- W3089215229 cites W2774867428 @default.
- W3089215229 cites W2778432366 @default.
- W3089215229 cites W2789289184 @default.
- W3089215229 cites W2910445581 @default.
- W3089215229 cites W2911784435 @default.
- W3089215229 cites W2921528463 @default.
- W3089215229 cites W2987879079 @default.
- W3089215229 cites W4252806690 @default.
- W3089215229 cites W4256261131 @default.
- W3089215229 doi "https://doi.org/10.1016/j.measurement.2020.108474" @default.
- W3089215229 hasPublicationYear "2021" @default.
- W3089215229 type Work @default.
- W3089215229 sameAs 3089215229 @default.
- W3089215229 citedByCount "85" @default.
- W3089215229 countsByYear W30892152292021 @default.
- W3089215229 countsByYear W30892152292022 @default.
- W3089215229 countsByYear W30892152292023 @default.
- W3089215229 crossrefType "journal-article" @default.
- W3089215229 hasAuthorship W3089215229A5034166910 @default.
- W3089215229 hasAuthorship W3089215229A5044358049 @default.
- W3089215229 hasAuthorship W3089215229A5045129644 @default.
- W3089215229 hasAuthorship W3089215229A5067294377 @default.
- W3089215229 hasConcept C103824480 @default.
- W3089215229 hasConcept C120665830 @default.
- W3089215229 hasConcept C121332964 @default.
- W3089215229 hasConcept C125287762 @default.
- W3089215229 hasConcept C138885662 @default.
- W3089215229 hasConcept C144308804 @default.
- W3089215229 hasConcept C154945302 @default.
- W3089215229 hasConcept C185592680 @default.
- W3089215229 hasConcept C192562407 @default.
- W3089215229 hasConcept C2776401178 @default.
- W3089215229 hasConcept C31972630 @default.
- W3089215229 hasConcept C38349280 @default.
- W3089215229 hasConcept C41008148 @default.
- W3089215229 hasConcept C41895202 @default.
- W3089215229 hasConcept C43617362 @default.
- W3089215229 hasConcept C44280652 @default.
- W3089215229 hasConcept C4725764 @default.
- W3089215229 hasConcept C52622490 @default.
- W3089215229 hasConcept C57879066 @default.
- W3089215229 hasConcept C62520636 @default.
- W3089215229 hasConceptScore W3089215229C103824480 @default.
- W3089215229 hasConceptScore W3089215229C120665830 @default.
- W3089215229 hasConceptScore W3089215229C121332964 @default.
- W3089215229 hasConceptScore W3089215229C125287762 @default.
- W3089215229 hasConceptScore W3089215229C138885662 @default.
- W3089215229 hasConceptScore W3089215229C144308804 @default.
- W3089215229 hasConceptScore W3089215229C154945302 @default.
- W3089215229 hasConceptScore W3089215229C185592680 @default.
- W3089215229 hasConceptScore W3089215229C192562407 @default.
- W3089215229 hasConceptScore W3089215229C2776401178 @default.
- W3089215229 hasConceptScore W3089215229C31972630 @default.
- W3089215229 hasConceptScore W3089215229C38349280 @default.
- W3089215229 hasConceptScore W3089215229C41008148 @default.
- W3089215229 hasConceptScore W3089215229C41895202 @default.
- W3089215229 hasConceptScore W3089215229C43617362 @default.
- W3089215229 hasConceptScore W3089215229C44280652 @default.
- W3089215229 hasConceptScore W3089215229C4725764 @default.
- W3089215229 hasConceptScore W3089215229C52622490 @default.
- W3089215229 hasConceptScore W3089215229C57879066 @default.
- W3089215229 hasConceptScore W3089215229C62520636 @default.
- W3089215229 hasFunder F4320328491 @default.
- W3089215229 hasLocation W30892152291 @default.
- W3089215229 hasOpenAccess W3089215229 @default.
- W3089215229 hasPrimaryLocation W30892152291 @default.
- W3089215229 hasRelatedWork W1977284501 @default.
- W3089215229 hasRelatedWork W1989246342 @default.
- W3089215229 hasRelatedWork W2022364796 @default.
- W3089215229 hasRelatedWork W2891194622 @default.
- W3089215229 hasRelatedWork W3015928229 @default.
- W3089215229 hasRelatedWork W3035552820 @default.
- W3089215229 hasRelatedWork W4210656569 @default.
- W3089215229 hasRelatedWork W4210922983 @default.