Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089225824> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3089225824 endingPage "486" @default.
- W3089225824 startingPage "475" @default.
- W3089225824 abstract "In the present study, we have used feed-forward neural network (FFNN) for the prediction of compressive and flexural strength of steel slag mixed concrete for pavements. The compressive and flexural strength of the specimens were examined experimentally for the specimens consisting of 0, 10, 15, 20 and 25% Argon Oxygen Decarburization (AOD) steel slag as a partial replacement of cement in M40 concrete mix. The curing of specimens was done for 3, 7, 28, 90, 180 and 365 days and thus accounting for the total of 90 observations. Both the output parameters were dependent upon 8 input parameters. To evaluate the performance of the FFNN model, we have used Mean Squared Error (MSE) and Mean Average Error (MAE) as the performance indicators." @default.
- W3089225824 created "2020-10-01" @default.
- W3089225824 creator A5046423804 @default.
- W3089225824 creator A5069221951 @default.
- W3089225824 date "2020-09-25" @default.
- W3089225824 modified "2023-10-18" @default.
- W3089225824 title "A Novel Approach for Predicting the Compressive and Flexural Strength of Steel Slag Mixed Concrete Using Feed-Forward Neural Network" @default.
- W3089225824 cites W2032962877 @default.
- W3089225824 cites W2047270112 @default.
- W3089225824 cites W2061933243 @default.
- W3089225824 cites W2098398123 @default.
- W3089225824 cites W2247404579 @default.
- W3089225824 cites W2338264815 @default.
- W3089225824 cites W2509833584 @default.
- W3089225824 cites W2559135426 @default.
- W3089225824 cites W2580486137 @default.
- W3089225824 cites W2766098660 @default.
- W3089225824 cites W612593197 @default.
- W3089225824 doi "https://doi.org/10.1007/978-981-15-5463-6_41" @default.
- W3089225824 hasPublicationYear "2020" @default.
- W3089225824 type Work @default.
- W3089225824 sameAs 3089225824 @default.
- W3089225824 citedByCount "1" @default.
- W3089225824 countsByYear W30892258242022 @default.
- W3089225824 crossrefType "book-chapter" @default.
- W3089225824 hasAuthorship W3089225824A5046423804 @default.
- W3089225824 hasAuthorship W3089225824A5069221951 @default.
- W3089225824 hasConcept C119857082 @default.
- W3089225824 hasConcept C159048435 @default.
- W3089225824 hasConcept C159985019 @default.
- W3089225824 hasConcept C178405089 @default.
- W3089225824 hasConcept C192562407 @default.
- W3089225824 hasConcept C30407753 @default.
- W3089225824 hasConcept C41008148 @default.
- W3089225824 hasConcept C50644808 @default.
- W3089225824 hasConceptScore W3089225824C119857082 @default.
- W3089225824 hasConceptScore W3089225824C159048435 @default.
- W3089225824 hasConceptScore W3089225824C159985019 @default.
- W3089225824 hasConceptScore W3089225824C178405089 @default.
- W3089225824 hasConceptScore W3089225824C192562407 @default.
- W3089225824 hasConceptScore W3089225824C30407753 @default.
- W3089225824 hasConceptScore W3089225824C41008148 @default.
- W3089225824 hasConceptScore W3089225824C50644808 @default.
- W3089225824 hasLocation W30892258241 @default.
- W3089225824 hasOpenAccess W3089225824 @default.
- W3089225824 hasPrimaryLocation W30892258241 @default.
- W3089225824 hasRelatedWork W1993836386 @default.
- W3089225824 hasRelatedWork W2025687592 @default.
- W3089225824 hasRelatedWork W2032911810 @default.
- W3089225824 hasRelatedWork W2042892459 @default.
- W3089225824 hasRelatedWork W2057164293 @default.
- W3089225824 hasRelatedWork W2093235904 @default.
- W3089225824 hasRelatedWork W2171568989 @default.
- W3089225824 hasRelatedWork W2771163941 @default.
- W3089225824 hasRelatedWork W2944045227 @default.
- W3089225824 hasRelatedWork W3008690834 @default.
- W3089225824 isParatext "false" @default.
- W3089225824 isRetracted "false" @default.
- W3089225824 magId "3089225824" @default.
- W3089225824 workType "book-chapter" @default.