Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089247292> ?p ?o ?g. }
- W3089247292 endingPage "346" @default.
- W3089247292 startingPage "346" @default.
- W3089247292 abstract "Piping erosion is one form of water erosion that leads to significant changes in the landscape and environmental degradation. In the present study, we evaluated piping erosion modeling in the Zarandieh watershed of Markazi province in Iran based on random forest (RF), support vector machine (SVM), and Bayesian generalized linear models (Bayesian GLM) machine learning algorithms. For this goal, due to the importance of various geo-environmental and soil properties in the evolution and creation of piping erosion, 18 variables were considered for modeling the piping erosion susceptibility in the Zarandieh watershed. A total of 152 points of piping erosion were recognized in the study area that were divided into training (70%) and validation (30%) for modeling. The area under curve (AUC) was used to assess the effeciency of the RF, SVM, and Bayesian GLM. Piping erosion susceptibility results indicated that all three RF, SVM, and Bayesian GLM models had high efficiency in the testing step, such as the AUC shown with values of 0.9 for RF, 0.88 for SVM, and 0.87 for Bayesian GLM. Altitude, pH, and bulk density were the variables that had the greatest influence on the piping erosion susceptibility in the Zarandieh watershed. This result indicates that geo-environmental and soil chemical variables are accountable for the expansion of piping erosion in the Zarandieh watershed." @default.
- W3089247292 created "2020-10-01" @default.
- W3089247292 creator A5005775373 @default.
- W3089247292 creator A5006293953 @default.
- W3089247292 creator A5012676749 @default.
- W3089247292 creator A5030817787 @default.
- W3089247292 creator A5052418107 @default.
- W3089247292 creator A5065136094 @default.
- W3089247292 creator A5072746309 @default.
- W3089247292 creator A5090671205 @default.
- W3089247292 date "2020-09-23" @default.
- W3089247292 modified "2023-10-18" @default.
- W3089247292 title "Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data" @default.
- W3089247292 cites W1583702732 @default.
- W3089247292 cites W1963900566 @default.
- W3089247292 cites W1966011970 @default.
- W3089247292 cites W1968970844 @default.
- W3089247292 cites W1971704880 @default.
- W3089247292 cites W1971765817 @default.
- W3089247292 cites W1975051018 @default.
- W3089247292 cites W1978110877 @default.
- W3089247292 cites W1979968747 @default.
- W3089247292 cites W1988123729 @default.
- W3089247292 cites W1992840289 @default.
- W3089247292 cites W2001998113 @default.
- W3089247292 cites W2002795132 @default.
- W3089247292 cites W2011712357 @default.
- W3089247292 cites W2013999873 @default.
- W3089247292 cites W2024242769 @default.
- W3089247292 cites W2033525310 @default.
- W3089247292 cites W2047780263 @default.
- W3089247292 cites W2054293908 @default.
- W3089247292 cites W2059009981 @default.
- W3089247292 cites W2071246728 @default.
- W3089247292 cites W2086063460 @default.
- W3089247292 cites W2091819522 @default.
- W3089247292 cites W2106513036 @default.
- W3089247292 cites W2139212933 @default.
- W3089247292 cites W2145427519 @default.
- W3089247292 cites W2251784928 @default.
- W3089247292 cites W2293107680 @default.
- W3089247292 cites W2301599595 @default.
- W3089247292 cites W2318568688 @default.
- W3089247292 cites W2330730947 @default.
- W3089247292 cites W2338689459 @default.
- W3089247292 cites W2506738763 @default.
- W3089247292 cites W2523887947 @default.
- W3089247292 cites W2552962788 @default.
- W3089247292 cites W2606184631 @default.
- W3089247292 cites W2606381682 @default.
- W3089247292 cites W2622828109 @default.
- W3089247292 cites W2735098591 @default.
- W3089247292 cites W2741433739 @default.
- W3089247292 cites W2741517055 @default.
- W3089247292 cites W2746041409 @default.
- W3089247292 cites W2767880575 @default.
- W3089247292 cites W2780805538 @default.
- W3089247292 cites W2790826728 @default.
- W3089247292 cites W2884484990 @default.
- W3089247292 cites W2886127869 @default.
- W3089247292 cites W2886479483 @default.
- W3089247292 cites W2886744464 @default.
- W3089247292 cites W2887697414 @default.
- W3089247292 cites W2889590562 @default.
- W3089247292 cites W2890018514 @default.
- W3089247292 cites W2892308381 @default.
- W3089247292 cites W2899645870 @default.
- W3089247292 cites W2908664309 @default.
- W3089247292 cites W2908831454 @default.
- W3089247292 cites W2909193898 @default.
- W3089247292 cites W2911964244 @default.
- W3089247292 cites W2914164797 @default.
- W3089247292 cites W2920548804 @default.
- W3089247292 cites W2936617453 @default.
- W3089247292 cites W2942378806 @default.
- W3089247292 cites W2943863934 @default.
- W3089247292 cites W2947478025 @default.
- W3089247292 cites W2955837189 @default.
- W3089247292 cites W2978908408 @default.
- W3089247292 cites W2987204935 @default.
- W3089247292 cites W2987573088 @default.
- W3089247292 cites W2988009291 @default.
- W3089247292 cites W2990296332 @default.
- W3089247292 cites W2991459440 @default.
- W3089247292 cites W2992321006 @default.
- W3089247292 cites W2994312904 @default.
- W3089247292 cites W2994660704 @default.
- W3089247292 cites W2995104057 @default.
- W3089247292 cites W2997015292 @default.
- W3089247292 cites W2997272294 @default.
- W3089247292 cites W3001389354 @default.
- W3089247292 cites W3006555407 @default.
- W3089247292 cites W3029100615 @default.
- W3089247292 cites W3036091573 @default.
- W3089247292 cites W3038211547 @default.
- W3089247292 cites W3042794171 @default.
- W3089247292 cites W4212883601 @default.
- W3089247292 cites W2902767247 @default.