Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089248548> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3089248548 endingPage "418" @default.
- W3089248548 startingPage "403" @default.
- W3089248548 abstract "Extensive technologies have been employed to explore a best way for cross-lingual transfer learning. In medical domain, Named Entity Recognition is pivotal for many downstream tasks, such as medical entity linking and clinical decision support systems. Nevertheless, the lack of annotation limits the applicability in many languages without enough labeled data. To alleviate this issue and make use of languages with sufficient annotated data, we find a new way to obtain medical parallel corpus from medical terminology systems and knowledge bases and propose a methodology which combines cross-lingual language model pretraining and bilingual word embedding alignment with the help of the parallel corpus. Moreover, our combined architecture which maintains the framework of pretrained model can not only be used for NER task but also other downstream NLP tasks. Experiments demonstrated that incorporating Chinese and English medical data can effectively improve the performance for an English medical NER dataset (i2b2)." @default.
- W3089248548 created "2020-10-01" @default.
- W3089248548 creator A5014238603 @default.
- W3089248548 creator A5016806784 @default.
- W3089248548 creator A5030213753 @default.
- W3089248548 creator A5030968272 @default.
- W3089248548 creator A5038539867 @default.
- W3089248548 creator A5045807606 @default.
- W3089248548 creator A5049936379 @default.
- W3089248548 creator A5073216396 @default.
- W3089248548 date "2020-01-01" @default.
- W3089248548 modified "2023-10-14" @default.
- W3089248548 title "Cross-Lingual Transfer Learning for Medical Named Entity Recognition" @default.
- W3089248548 cites W1504212872 @default.
- W3089248548 cites W1602694398 @default.
- W3089248548 cites W2016630033 @default.
- W3089248548 cites W2107934484 @default.
- W3089248548 cites W2114668172 @default.
- W3089248548 cites W2121740558 @default.
- W3089248548 cites W2125260686 @default.
- W3089248548 cites W2128279348 @default.
- W3089248548 cites W2135890475 @default.
- W3089248548 cites W2146089916 @default.
- W3089248548 cites W2250539671 @default.
- W3089248548 cites W2270070752 @default.
- W3089248548 cites W2296283641 @default.
- W3089248548 cites W2396881363 @default.
- W3089248548 cites W2461871142 @default.
- W3089248548 cites W2561995736 @default.
- W3089248548 cites W2613831280 @default.
- W3089248548 cites W2734608416 @default.
- W3089248548 cites W2734693922 @default.
- W3089248548 cites W2740132093 @default.
- W3089248548 cites W2741602058 @default.
- W3089248548 cites W2905273891 @default.
- W3089248548 cites W2962739339 @default.
- W3089248548 cites W2962784628 @default.
- W3089248548 cites W2963026768 @default.
- W3089248548 cites W2963571188 @default.
- W3089248548 cites W2963918774 @default.
- W3089248548 cites W2973088264 @default.
- W3089248548 cites W342285082 @default.
- W3089248548 doi "https://doi.org/10.1007/978-3-030-59410-7_28" @default.
- W3089248548 hasPublicationYear "2020" @default.
- W3089248548 type Work @default.
- W3089248548 sameAs 3089248548 @default.
- W3089248548 citedByCount "1" @default.
- W3089248548 countsByYear W30892485482023 @default.
- W3089248548 crossrefType "book-chapter" @default.
- W3089248548 hasAuthorship W3089248548A5014238603 @default.
- W3089248548 hasAuthorship W3089248548A5016806784 @default.
- W3089248548 hasAuthorship W3089248548A5030213753 @default.
- W3089248548 hasAuthorship W3089248548A5030968272 @default.
- W3089248548 hasAuthorship W3089248548A5038539867 @default.
- W3089248548 hasAuthorship W3089248548A5045807606 @default.
- W3089248548 hasAuthorship W3089248548A5049936379 @default.
- W3089248548 hasAuthorship W3089248548A5073216396 @default.
- W3089248548 hasConcept C150899416 @default.
- W3089248548 hasConcept C154945302 @default.
- W3089248548 hasConcept C204321447 @default.
- W3089248548 hasConcept C28490314 @default.
- W3089248548 hasConcept C41008148 @default.
- W3089248548 hasConceptScore W3089248548C150899416 @default.
- W3089248548 hasConceptScore W3089248548C154945302 @default.
- W3089248548 hasConceptScore W3089248548C204321447 @default.
- W3089248548 hasConceptScore W3089248548C28490314 @default.
- W3089248548 hasConceptScore W3089248548C41008148 @default.
- W3089248548 hasLocation W30892485481 @default.
- W3089248548 hasOpenAccess W3089248548 @default.
- W3089248548 hasPrimaryLocation W30892485481 @default.
- W3089248548 hasRelatedWork W1552159754 @default.
- W3089248548 hasRelatedWork W2148757832 @default.
- W3089248548 hasRelatedWork W2293457016 @default.
- W3089248548 hasRelatedWork W2368651715 @default.
- W3089248548 hasRelatedWork W2611614995 @default.
- W3089248548 hasRelatedWork W2789919619 @default.
- W3089248548 hasRelatedWork W2955547577 @default.
- W3089248548 hasRelatedWork W3107474891 @default.
- W3089248548 hasRelatedWork W4205316385 @default.
- W3089248548 hasRelatedWork W4321496520 @default.
- W3089248548 isParatext "false" @default.
- W3089248548 isRetracted "false" @default.
- W3089248548 magId "3089248548" @default.
- W3089248548 workType "book-chapter" @default.