Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089288210> ?p ?o ?g. }
- W3089288210 endingPage "103971" @default.
- W3089288210 startingPage "103971" @default.
- W3089288210 abstract "Abstract Reliable flash flood susceptibility maps are a vital tool for land planners and emergency management officials for early flood warning and mitigation. We have developed a new ensemble learning model that predicts flash flood susceptibility at Haraz, Iran. The new model couples a Bayesian Belief Network (BBN) model with an extreme learning machine (ELM) and backpropagation (BP) structure optimized by a genetic algorithm (GA) named GA-BN-NN model. We applied the support vector machine (SVM) technique to a database of 194 flood locations with ten conditioning factors. An artificial neural network (ANN) algorithm with a multi-layer perceptron function, MLP-BP, optimized by a genetic algorithm, GA-MLP, and a shuffled frog-leaping algorithm, SFLA-MLP, were used as benchmark models for assessing the power prediction of the proposed model. Statistical measures, including sensitivity, specificity, accuracy, F1-measure and Jaccard coefficient, and root mean square error, were used to evaluate the goodness-of-fit and prediction accuracy, respectively, of the training and testing datasets. We found that all ten factors are positively correlated with flood occurrence, but slope angle has the highest average merit (AM = 9.7) and thus contributes most to the occurrence of flooding. Results indicate that the GA-BN-NN model has the highest goodness-of-fit and prediction accuracy (AUC = 0.966) and hence outperforms other ensemble learning models that we tested — the SFLA-MLP, MLP-BP, and GA-MLP models. We thus conclude that the proposed model is a promising technique for managing risk in flood-prone areas around the world." @default.
- W3089288210 created "2020-10-01" @default.
- W3089288210 creator A5035752085 @default.
- W3089288210 creator A5046620343 @default.
- W3089288210 creator A5052041336 @default.
- W3089288210 creator A5052390681 @default.
- W3089288210 creator A5074879342 @default.
- W3089288210 creator A5076352077 @default.
- W3089288210 creator A5083514118 @default.
- W3089288210 creator A5090873433 @default.
- W3089288210 creator A5091211368 @default.
- W3089288210 date "2020-11-01" @default.
- W3089288210 modified "2023-10-01" @default.
- W3089288210 title "A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping" @default.
- W3089288210 cites W1199671609 @default.
- W3089288210 cites W1485299191 @default.
- W3089288210 cites W1966991711 @default.
- W3089288210 cites W1967931845 @default.
- W3089288210 cites W1973445088 @default.
- W3089288210 cites W1974340893 @default.
- W3089288210 cites W1975116313 @default.
- W3089288210 cites W1985842955 @default.
- W3089288210 cites W1986760892 @default.
- W3089288210 cites W1994114449 @default.
- W3089288210 cites W1998439728 @default.
- W3089288210 cites W1999310382 @default.
- W3089288210 cites W2012883379 @default.
- W3089288210 cites W2015640273 @default.
- W3089288210 cites W2016167483 @default.
- W3089288210 cites W2024659789 @default.
- W3089288210 cites W2026131661 @default.
- W3089288210 cites W2029324310 @default.
- W3089288210 cites W2038411763 @default.
- W3089288210 cites W2042315239 @default.
- W3089288210 cites W2049466036 @default.
- W3089288210 cites W2054036854 @default.
- W3089288210 cites W2056258586 @default.
- W3089288210 cites W2063958435 @default.
- W3089288210 cites W2064630666 @default.
- W3089288210 cites W2065642067 @default.
- W3089288210 cites W2066848039 @default.
- W3089288210 cites W2069301884 @default.
- W3089288210 cites W2069914810 @default.
- W3089288210 cites W2100168170 @default.
- W3089288210 cites W2111072639 @default.
- W3089288210 cites W2119387367 @default.
- W3089288210 cites W2122563367 @default.
- W3089288210 cites W2141902597 @default.
- W3089288210 cites W2143426320 @default.
- W3089288210 cites W2171132626 @default.
- W3089288210 cites W2200393290 @default.
- W3089288210 cites W2331009118 @default.
- W3089288210 cites W2391441828 @default.
- W3089288210 cites W2397054680 @default.
- W3089288210 cites W2408377373 @default.
- W3089288210 cites W2471840424 @default.
- W3089288210 cites W2484311569 @default.
- W3089288210 cites W2503191342 @default.
- W3089288210 cites W2589052052 @default.
- W3089288210 cites W2619767629 @default.
- W3089288210 cites W2620871096 @default.
- W3089288210 cites W2640557513 @default.
- W3089288210 cites W2730080717 @default.
- W3089288210 cites W2743430388 @default.
- W3089288210 cites W2758350461 @default.
- W3089288210 cites W2765742909 @default.
- W3089288210 cites W2766239654 @default.
- W3089288210 cites W2769668329 @default.
- W3089288210 cites W2776518198 @default.
- W3089288210 cites W2784075164 @default.
- W3089288210 cites W2789282353 @default.
- W3089288210 cites W2791328889 @default.
- W3089288210 cites W2796299618 @default.
- W3089288210 cites W2797238750 @default.
- W3089288210 cites W2809363322 @default.
- W3089288210 cites W2882999202 @default.
- W3089288210 cites W2891574421 @default.
- W3089288210 cites W2891625068 @default.
- W3089288210 cites W2900882012 @default.
- W3089288210 cites W2903721734 @default.
- W3089288210 cites W2905155550 @default.
- W3089288210 cites W2908465383 @default.
- W3089288210 cites W2912893284 @default.
- W3089288210 cites W2913214568 @default.
- W3089288210 cites W2914337278 @default.
- W3089288210 cites W2915602172 @default.
- W3089288210 cites W2927539500 @default.
- W3089288210 cites W2947721686 @default.
- W3089288210 cites W2953423956 @default.
- W3089288210 cites W2955858817 @default.
- W3089288210 cites W2960743345 @default.
- W3089288210 cites W2972082796 @default.
- W3089288210 cites W2985766090 @default.
- W3089288210 cites W2996101843 @default.
- W3089288210 cites W3101844402 @default.
- W3089288210 cites W33331100 @default.
- W3089288210 doi "https://doi.org/10.1016/j.engappai.2020.103971" @default.
- W3089288210 hasPublicationYear "2020" @default.