Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089336166> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3089336166 abstract "Abstract Recently, deep learning has been successfully applied to molecular graph generation. Nevertheless, mitigating the computational complexity, which increases with the number of nodes in a graph, has been a major challenge. This has hindered the application of deep learning-based molecular graph generation to large molecules with many heavy atoms. In this study, we present a molecular graph compression method to alleviate the complexity while maintaining the capability of generating chemically valid and diverse molecular graphs. We designate six small substructural patterns that are prevalent between two atoms in real-world molecules. These relevant substructures in a molecular graph are then converted to edges by regarding them as additional edge features along with the bond types. This reduces the number of nodes significantly without any information loss. Consequently, a generative model can be constructed in a more efficient and scalable manner with large molecules on a compressed graph representation. We demonstrate the effectiveness of the proposed method for molecules with up to 88 heavy atoms using the GuacaMol benchmark." @default.
- W3089336166 created "2020-10-01" @default.
- W3089336166 creator A5000130215 @default.
- W3089336166 creator A5010312084 @default.
- W3089336166 creator A5012341737 @default.
- W3089336166 creator A5036947592 @default.
- W3089336166 creator A5061506731 @default.
- W3089336166 date "2020-09-23" @default.
- W3089336166 modified "2023-10-12" @default.
- W3089336166 title "Compressed graph representation for scalable molecular graph generation" @default.
- W3089336166 cites W1757990252 @default.
- W3089336166 cites W2114704115 @default.
- W3089336166 cites W2177317049 @default.
- W3089336166 cites W2558999090 @default.
- W3089336166 cites W2578240541 @default.
- W3089336166 cites W2883583109 @default.
- W3089336166 cites W2891868449 @default.
- W3089336166 cites W2914542247 @default.
- W3089336166 cites W2945551948 @default.
- W3089336166 cites W2953128081 @default.
- W3089336166 cites W2953641781 @default.
- W3089336166 cites W2990537780 @default.
- W3089336166 cites W3098269892 @default.
- W3089336166 cites W3105358895 @default.
- W3089336166 doi "https://doi.org/10.1186/s13321-020-00463-2" @default.
- W3089336166 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7513488" @default.
- W3089336166 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33431050" @default.
- W3089336166 hasPublicationYear "2020" @default.
- W3089336166 type Work @default.
- W3089336166 sameAs 3089336166 @default.
- W3089336166 citedByCount "13" @default.
- W3089336166 countsByYear W30893361662021 @default.
- W3089336166 countsByYear W30893361662022 @default.
- W3089336166 countsByYear W30893361662023 @default.
- W3089336166 crossrefType "journal-article" @default.
- W3089336166 hasAuthorship W3089336166A5000130215 @default.
- W3089336166 hasAuthorship W3089336166A5010312084 @default.
- W3089336166 hasAuthorship W3089336166A5012341737 @default.
- W3089336166 hasAuthorship W3089336166A5036947592 @default.
- W3089336166 hasAuthorship W3089336166A5061506731 @default.
- W3089336166 hasBestOaLocation W30893361661 @default.
- W3089336166 hasConcept C11413529 @default.
- W3089336166 hasConcept C132525143 @default.
- W3089336166 hasConcept C179799912 @default.
- W3089336166 hasConcept C2780022179 @default.
- W3089336166 hasConcept C41008148 @default.
- W3089336166 hasConcept C48044578 @default.
- W3089336166 hasConcept C77088390 @default.
- W3089336166 hasConcept C80444323 @default.
- W3089336166 hasConceptScore W3089336166C11413529 @default.
- W3089336166 hasConceptScore W3089336166C132525143 @default.
- W3089336166 hasConceptScore W3089336166C179799912 @default.
- W3089336166 hasConceptScore W3089336166C2780022179 @default.
- W3089336166 hasConceptScore W3089336166C41008148 @default.
- W3089336166 hasConceptScore W3089336166C48044578 @default.
- W3089336166 hasConceptScore W3089336166C77088390 @default.
- W3089336166 hasConceptScore W3089336166C80444323 @default.
- W3089336166 hasFunder F4320315121 @default.
- W3089336166 hasFunder F4320322120 @default.
- W3089336166 hasIssue "1" @default.
- W3089336166 hasLocation W30893361661 @default.
- W3089336166 hasLocation W30893361662 @default.
- W3089336166 hasOpenAccess W3089336166 @default.
- W3089336166 hasPrimaryLocation W30893361661 @default.
- W3089336166 hasRelatedWork W1838576100 @default.
- W3089336166 hasRelatedWork W1983399550 @default.
- W3089336166 hasRelatedWork W2013842271 @default.
- W3089336166 hasRelatedWork W2089704382 @default.
- W3089336166 hasRelatedWork W2095886385 @default.
- W3089336166 hasRelatedWork W2389214306 @default.
- W3089336166 hasRelatedWork W2808877228 @default.
- W3089336166 hasRelatedWork W2965083567 @default.
- W3089336166 hasRelatedWork W2969553894 @default.
- W3089336166 hasRelatedWork W4235240664 @default.
- W3089336166 hasVolume "12" @default.
- W3089336166 isParatext "false" @default.
- W3089336166 isRetracted "false" @default.
- W3089336166 magId "3089336166" @default.
- W3089336166 workType "article" @default.