Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089352364> ?p ?o ?g. }
- W3089352364 endingPage "e21980" @default.
- W3089352364 startingPage "e21980" @default.
- W3089352364 abstract "Background In the prevention and control of infectious diseases, previous research on the application of big data technology has mainly focused on the early warning and early monitoring of infectious diseases. Although the application of big data technology for COVID-19 warning and monitoring remain important tasks, prevention of the disease’s rapid spread and reduction of its impact on society are currently the most pressing challenges for the application of big data technology during the COVID-19 pandemic. After the outbreak of COVID-19 in Wuhan, the Chinese government and nongovernmental organizations actively used big data technology to prevent, contain, and control the spread of COVID-19. Objective The aim of this study is to discuss the application of big data technology to prevent, contain, and control COVID-19 in China; draw lessons; and make recommendations. Methods We discuss the data collection methods and key data information that existed in China before the outbreak of COVID-19 and how these data contributed to the prevention and control of COVID-19. Next, we discuss China’s new data collection methods and new information assembled after the outbreak of COVID-19. Based on the data and information collected in China, we analyzed the application of big data technology from the perspectives of data sources, data application logic, data application level, and application results. In addition, we analyzed the issues, challenges, and responses encountered by China in the application of big data technology from four perspectives: data access, data use, data sharing, and data protection. Suggestions for improvements are made for data collection, data circulation, data innovation, and data security to help understand China’s response to the epidemic and to provide lessons for other countries’ prevention and control of COVID-19. Results In the process of the prevention and control of COVID-19 in China, big data technology has played an important role in personal tracking, surveillance and early warning, tracking of the virus’s sources, drug screening, medical treatment, resource allocation, and production recovery. The data used included location and travel data, medical and health data, news media data, government data, online consumption data, data collected by intelligent equipment, and epidemic prevention data. We identified a number of big data problems including low efficiency of data collection, difficulty in guaranteeing data quality, low efficiency of data use, lack of timely data sharing, and data privacy protection issues. To address these problems, we suggest unified data collection standards, innovative use of data, accelerated exchange and circulation of data, and a detailed and rigorous data protection system. Conclusions China has used big data technology to prevent and control COVID-19 in a timely manner. To prevent and control infectious diseases, countries must collect, clean, and integrate data from a wide range of sources; use big data technology to analyze a wide range of big data; create platforms for data analyses and sharing; and address privacy issues in the collection and use of big data." @default.
- W3089352364 created "2020-10-08" @default.
- W3089352364 creator A5006287785 @default.
- W3089352364 creator A5008221780 @default.
- W3089352364 creator A5024428192 @default.
- W3089352364 creator A5064869771 @default.
- W3089352364 creator A5071895025 @default.
- W3089352364 date "2020-10-09" @default.
- W3089352364 modified "2023-10-18" @default.
- W3089352364 title "Application of Big Data Technology for COVID-19 Prevention and Control in China: Lessons and Recommendations" @default.
- W3089352364 cites W1071368427 @default.
- W3089352364 cites W1972240185 @default.
- W3089352364 cites W1974139404 @default.
- W3089352364 cites W1976321704 @default.
- W3089352364 cites W1994565167 @default.
- W3089352364 cites W2038752134 @default.
- W3089352364 cites W2038789080 @default.
- W3089352364 cites W2117239687 @default.
- W3089352364 cites W2118023920 @default.
- W3089352364 cites W2120751691 @default.
- W3089352364 cites W2161924689 @default.
- W3089352364 cites W2477032014 @default.
- W3089352364 cites W2504150216 @default.
- W3089352364 cites W2549072498 @default.
- W3089352364 cites W2549900009 @default.
- W3089352364 cites W2550759377 @default.
- W3089352364 cites W2554166769 @default.
- W3089352364 cites W2554926856 @default.
- W3089352364 cites W2555057383 @default.
- W3089352364 cites W2565629978 @default.
- W3089352364 cites W2581082771 @default.
- W3089352364 cites W2610490986 @default.
- W3089352364 cites W2610984530 @default.
- W3089352364 cites W2747480872 @default.
- W3089352364 cites W2753641467 @default.
- W3089352364 cites W2794803511 @default.
- W3089352364 cites W2883585595 @default.
- W3089352364 cites W2940441068 @default.
- W3089352364 cites W2951946244 @default.
- W3089352364 cites W3003807992 @default.
- W3089352364 cites W3006718791 @default.
- W3089352364 cites W3009876049 @default.
- W3089352364 cites W3012769470 @default.
- W3089352364 cites W3013056994 @default.
- W3089352364 cites W3013627785 @default.
- W3089352364 cites W3021613067 @default.
- W3089352364 cites W3021622280 @default.
- W3089352364 cites W3021778693 @default.
- W3089352364 cites W3025999872 @default.
- W3089352364 cites W3026930841 @default.
- W3089352364 cites W3027764902 @default.
- W3089352364 cites W3033600921 @default.
- W3089352364 cites W3036374861 @default.
- W3089352364 doi "https://doi.org/10.2196/21980" @default.
- W3089352364 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7561444" @default.
- W3089352364 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33001836" @default.
- W3089352364 hasPublicationYear "2020" @default.
- W3089352364 type Work @default.
- W3089352364 sameAs 3089352364 @default.
- W3089352364 citedByCount "85" @default.
- W3089352364 countsByYear W30893523642021 @default.
- W3089352364 countsByYear W30893523642022 @default.
- W3089352364 countsByYear W30893523642023 @default.
- W3089352364 crossrefType "journal-article" @default.
- W3089352364 hasAuthorship W3089352364A5006287785 @default.
- W3089352364 hasAuthorship W3089352364A5008221780 @default.
- W3089352364 hasAuthorship W3089352364A5024428192 @default.
- W3089352364 hasAuthorship W3089352364A5064869771 @default.
- W3089352364 hasAuthorship W3089352364A5071895025 @default.
- W3089352364 hasBestOaLocation W30893523641 @default.
- W3089352364 hasConcept C105795698 @default.
- W3089352364 hasConcept C124101348 @default.
- W3089352364 hasConcept C133462117 @default.
- W3089352364 hasConcept C138885662 @default.
- W3089352364 hasConcept C142724271 @default.
- W3089352364 hasConcept C144133560 @default.
- W3089352364 hasConcept C17744445 @default.
- W3089352364 hasConcept C191935318 @default.
- W3089352364 hasConcept C199539241 @default.
- W3089352364 hasConcept C204787440 @default.
- W3089352364 hasConcept C2522767166 @default.
- W3089352364 hasConcept C2778137410 @default.
- W3089352364 hasConcept C2779134260 @default.
- W3089352364 hasConcept C2779965156 @default.
- W3089352364 hasConcept C3008058167 @default.
- W3089352364 hasConcept C33923547 @default.
- W3089352364 hasConcept C41008148 @default.
- W3089352364 hasConcept C41895202 @default.
- W3089352364 hasConcept C524204448 @default.
- W3089352364 hasConcept C71924100 @default.
- W3089352364 hasConcept C75684735 @default.
- W3089352364 hasConcept C89623803 @default.
- W3089352364 hasConceptScore W3089352364C105795698 @default.
- W3089352364 hasConceptScore W3089352364C124101348 @default.
- W3089352364 hasConceptScore W3089352364C133462117 @default.
- W3089352364 hasConceptScore W3089352364C138885662 @default.
- W3089352364 hasConceptScore W3089352364C142724271 @default.
- W3089352364 hasConceptScore W3089352364C144133560 @default.