Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089359817> ?p ?o ?g. }
- W3089359817 abstract "Project managers face complex challenges when planning project stages because contract durations and project costs are difficult to predict accurately. The purpose of this study is to investigate statistical tools and concepts that can be integrated in the second phase of the project life cycle: the planning stage. Furthermore, this study aims to compare the accuracy of multiple regression and artificial neural network models, as well as the application of simulation in construction models used in predicting project duration and cost. This paper will also discuss the industry's current estimation methods, the use of statistical approaches, simulation, and the relationship between the application statistical tools and project success. Thus, this review identifies the trending statistical tools used by scholars to develop regression and neural models to solve the complexity of cost and duration estimation. The findings indicate that although the industry needs more accurate predictions and estimating tools, and regardless of the investigations and advancements made with integrating statistical tools, implementing these statistical approaches is faced with barriers." @default.
- W3089359817 created "2020-10-08" @default.
- W3089359817 creator A5056872261 @default.
- W3089359817 date "2020-01-01" @default.
- W3089359817 modified "2023-10-14" @default.
- W3089359817 title "Application of Multiple Regression and Artificial Neural Networks as Tools for Estimating Duration and Life Cycle Cost of Projects" @default.
- W3089359817 cites W1496734141 @default.
- W3089359817 cites W1498057711 @default.
- W3089359817 cites W1524357585 @default.
- W3089359817 cites W1529696319 @default.
- W3089359817 cites W1566104046 @default.
- W3089359817 cites W1903768489 @default.
- W3089359817 cites W1922620556 @default.
- W3089359817 cites W1964127093 @default.
- W3089359817 cites W1964156514 @default.
- W3089359817 cites W1972267355 @default.
- W3089359817 cites W1986344047 @default.
- W3089359817 cites W2000618385 @default.
- W3089359817 cites W2001451547 @default.
- W3089359817 cites W2001833513 @default.
- W3089359817 cites W2015019290 @default.
- W3089359817 cites W2016632831 @default.
- W3089359817 cites W2017268480 @default.
- W3089359817 cites W2019385537 @default.
- W3089359817 cites W2032545502 @default.
- W3089359817 cites W2043126501 @default.
- W3089359817 cites W2049757356 @default.
- W3089359817 cites W2058570169 @default.
- W3089359817 cites W2074603683 @default.
- W3089359817 cites W2083884400 @default.
- W3089359817 cites W2093413764 @default.
- W3089359817 cites W2112627077 @default.
- W3089359817 cites W2116387115 @default.
- W3089359817 cites W2131873985 @default.
- W3089359817 cites W2134653061 @default.
- W3089359817 cites W2148856038 @default.
- W3089359817 cites W2158837984 @default.
- W3089359817 cites W2167045142 @default.
- W3089359817 cites W2167911276 @default.
- W3089359817 cites W2169053895 @default.
- W3089359817 cites W2274495805 @default.
- W3089359817 cites W2305571643 @default.
- W3089359817 cites W2322510050 @default.
- W3089359817 cites W2327274774 @default.
- W3089359817 cites W2346671822 @default.
- W3089359817 cites W2363903014 @default.
- W3089359817 cites W2460583283 @default.
- W3089359817 cites W2517846039 @default.
- W3089359817 cites W2522953104 @default.
- W3089359817 cites W2531209915 @default.
- W3089359817 cites W2556986379 @default.
- W3089359817 cites W2564438249 @default.
- W3089359817 cites W2578462646 @default.
- W3089359817 cites W2581587778 @default.
- W3089359817 cites W2726646636 @default.
- W3089359817 cites W2752390295 @default.
- W3089359817 cites W2755309869 @default.
- W3089359817 cites W2760893388 @default.
- W3089359817 cites W2767004418 @default.
- W3089359817 cites W2767115392 @default.
- W3089359817 cites W2801158383 @default.
- W3089359817 cites W2804991915 @default.
- W3089359817 cites W2811451900 @default.
- W3089359817 cites W2858986596 @default.
- W3089359817 cites W2888576272 @default.
- W3089359817 cites W2890536785 @default.
- W3089359817 cites W2980022868 @default.
- W3089359817 cites W3123044995 @default.
- W3089359817 cites W3125509629 @default.
- W3089359817 cites W3139860299 @default.
- W3089359817 cites W2075040892 @default.
- W3089359817 cites W2993963585 @default.
- W3089359817 doi "https://doi.org/10.4018/ijaie.2020010101" @default.
- W3089359817 hasPublicationYear "2020" @default.
- W3089359817 type Work @default.
- W3089359817 sameAs 3089359817 @default.
- W3089359817 citedByCount "0" @default.
- W3089359817 crossrefType "journal-article" @default.
- W3089359817 hasAuthorship W3089359817A5056872261 @default.
- W3089359817 hasBestOaLocation W30893598171 @default.
- W3089359817 hasConcept C105795698 @default.
- W3089359817 hasConcept C112758219 @default.
- W3089359817 hasConcept C114289077 @default.
- W3089359817 hasConcept C119857082 @default.
- W3089359817 hasConcept C124952713 @default.
- W3089359817 hasConcept C127413603 @default.
- W3089359817 hasConcept C142362112 @default.
- W3089359817 hasConcept C152877465 @default.
- W3089359817 hasConcept C154945302 @default.
- W3089359817 hasConcept C201995342 @default.
- W3089359817 hasConcept C33923547 @default.
- W3089359817 hasConcept C41008148 @default.
- W3089359817 hasConcept C50644808 @default.
- W3089359817 hasConcept C83546350 @default.
- W3089359817 hasConcept C93983250 @default.
- W3089359817 hasConcept C96250715 @default.
- W3089359817 hasConceptScore W3089359817C105795698 @default.
- W3089359817 hasConceptScore W3089359817C112758219 @default.
- W3089359817 hasConceptScore W3089359817C114289077 @default.
- W3089359817 hasConceptScore W3089359817C119857082 @default.