Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089369348> ?p ?o ?g. }
- W3089369348 endingPage "573" @default.
- W3089369348 startingPage "565" @default.
- W3089369348 abstract "Artificial intelligence has pervasively transformed many industries and is beginning to shape medical practice. New use cases are being identified in subspecialty domains of medicine and, in particular, application of artificial intelligence has found its way to the practice of allergy-immunology. Here, we summarize recent developments, emerging applications and obstacles to realizing full potential.Artificial/augmented intelligence and machine learning are being used to reduce dimensional complexity, understand cellular interactions and advance vaccine work in the basic sciences. In genomics, bioinformatic methods are critical for variant calling and classification. For clinical work, artificial intelligence is enabling disease detection, risk profiling and decision support. These approaches are just beginning to have impact upon the field of clinical immunology and much opportunity exists for further advancement.This review highlights use of computational methods for analysis of large datasets across the spectrum of research and clinical care for patients with immunological disorders. Here, we discuss how big data methods are presently being used across the field clinical immunology." @default.
- W3089369348 created "2020-10-08" @default.
- W3089369348 creator A5016157627 @default.
- W3089369348 creator A5030861036 @default.
- W3089369348 creator A5090405389 @default.
- W3089369348 date "2020-09-29" @default.
- W3089369348 modified "2023-09-30" @default.
- W3089369348 title "Artificial intelligence and the hunt for immunological disorders" @default.
- W3089369348 cites W2119333273 @default.
- W3089369348 cites W2137621059 @default.
- W3089369348 cites W2174931596 @default.
- W3089369348 cites W2310890057 @default.
- W3089369348 cites W2391172882 @default.
- W3089369348 cites W2528491735 @default.
- W3089369348 cites W2581082771 @default.
- W3089369348 cites W2585915213 @default.
- W3089369348 cites W2591772459 @default.
- W3089369348 cites W2605320085 @default.
- W3089369348 cites W2643199789 @default.
- W3089369348 cites W2758348074 @default.
- W3089369348 cites W2789882727 @default.
- W3089369348 cites W2789894922 @default.
- W3089369348 cites W2795007297 @default.
- W3089369348 cites W2801193972 @default.
- W3089369348 cites W2888109941 @default.
- W3089369348 cites W2889664156 @default.
- W3089369348 cites W2892953206 @default.
- W3089369348 cites W2898882839 @default.
- W3089369348 cites W2901332105 @default.
- W3089369348 cites W2905810301 @default.
- W3089369348 cites W2906311950 @default.
- W3089369348 cites W2908201961 @default.
- W3089369348 cites W2909194804 @default.
- W3089369348 cites W2909934462 @default.
- W3089369348 cites W2911884040 @default.
- W3089369348 cites W2911958883 @default.
- W3089369348 cites W2913461384 @default.
- W3089369348 cites W2919115771 @default.
- W3089369348 cites W2921861522 @default.
- W3089369348 cites W2922015869 @default.
- W3089369348 cites W2934399013 @default.
- W3089369348 cites W2944477354 @default.
- W3089369348 cites W2954626553 @default.
- W3089369348 cites W2963269708 @default.
- W3089369348 cites W2968723626 @default.
- W3089369348 cites W2973113902 @default.
- W3089369348 cites W2980768184 @default.
- W3089369348 cites W2982561462 @default.
- W3089369348 cites W2993436875 @default.
- W3089369348 cites W2995850610 @default.
- W3089369348 cites W2997514453 @default.
- W3089369348 cites W2999501685 @default.
- W3089369348 cites W2999553151 @default.
- W3089369348 cites W3007915134 @default.
- W3089369348 cites W3008151094 @default.
- W3089369348 cites W3010140860 @default.
- W3089369348 cites W3014246070 @default.
- W3089369348 cites W3015283621 @default.
- W3089369348 cites W3019531985 @default.
- W3089369348 cites W3023178879 @default.
- W3089369348 cites W3025792765 @default.
- W3089369348 cites W3027889410 @default.
- W3089369348 cites W3098949126 @default.
- W3089369348 cites W3131647478 @default.
- W3089369348 doi "https://doi.org/10.1097/aci.0000000000000691" @default.
- W3089369348 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7908683" @default.
- W3089369348 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33002894" @default.
- W3089369348 hasPublicationYear "2020" @default.
- W3089369348 type Work @default.
- W3089369348 sameAs 3089369348 @default.
- W3089369348 citedByCount "12" @default.
- W3089369348 countsByYear W30893693482020 @default.
- W3089369348 countsByYear W30893693482021 @default.
- W3089369348 countsByYear W30893693482022 @default.
- W3089369348 countsByYear W30893693482023 @default.
- W3089369348 crossrefType "journal-article" @default.
- W3089369348 hasAuthorship W3089369348A5016157627 @default.
- W3089369348 hasAuthorship W3089369348A5030861036 @default.
- W3089369348 hasAuthorship W3089369348A5090405389 @default.
- W3089369348 hasBestOaLocation W30893693482 @default.
- W3089369348 hasConcept C111919701 @default.
- W3089369348 hasConcept C142724271 @default.
- W3089369348 hasConcept C154945302 @default.
- W3089369348 hasConcept C157170001 @default.
- W3089369348 hasConcept C163763905 @default.
- W3089369348 hasConcept C187191949 @default.
- W3089369348 hasConcept C202444582 @default.
- W3089369348 hasConcept C2522767166 @default.
- W3089369348 hasConcept C2780642338 @default.
- W3089369348 hasConcept C33923547 @default.
- W3089369348 hasConcept C41008148 @default.
- W3089369348 hasConcept C71924100 @default.
- W3089369348 hasConcept C9652623 @default.
- W3089369348 hasConceptScore W3089369348C111919701 @default.
- W3089369348 hasConceptScore W3089369348C142724271 @default.
- W3089369348 hasConceptScore W3089369348C154945302 @default.
- W3089369348 hasConceptScore W3089369348C157170001 @default.
- W3089369348 hasConceptScore W3089369348C163763905 @default.