Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089378041> ?p ?o ?g. }
- W3089378041 endingPage "224" @default.
- W3089378041 startingPage "216" @default.
- W3089378041 abstract "Background In polyglutamine (polyQ) disease, the investigation of the prediction of a patient's age at onset (AAO) facilitates the development of disease-modifying intervention and underpins the delay of disease onset and progression. Few polyQ disease studies have evaluated AAO predicted by machine-learning algorithms and linear regression methods. Objective The objective of this study was to develop a machine-learning model for AAO prediction in the largest spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) population from mainland China. Methods In this observational study, we introduced an innovative approach by systematically comparing the performance of 7 machine-learning algorithms with linear regression to explore AAO prediction in SCA3/MJD using CAG expansions of 10 polyQ-related genes, sex, and parental origin. Results Similar prediction performance of testing set and training set in each models were identified and few overfitting of training data was observed. Overall, the machine-learning-based XGBoost model exhibited the most favorable performance in AAO prediction over the traditional linear regression method and other 6 machine-learning algorithms for the training set and testing set. The optimal XGBoost model achieved mean absolute error, root mean square error, and median absolute error of 5.56, 7.13, 4.15 years, respectively, in testing set 1, with mean absolute error (4.78 years), root mean square error (6.31 years), and median absolute error (3.59 years) in testing set 2. Conclusion Machine-learning algorithms can be used to predict AAO in patients with SCA3/MJD. The optimal XGBoost algorithm can provide a good reference for the establishment and optimization of prediction models for SCA3/MJD or other polyQ diseases. © 2020 International Parkinson and Movement Disorder Society." @default.
- W3089378041 created "2020-10-08" @default.
- W3089378041 creator A5001030035 @default.
- W3089378041 creator A5002674172 @default.
- W3089378041 creator A5004674953 @default.
- W3089378041 creator A5005348028 @default.
- W3089378041 creator A5012834626 @default.
- W3089378041 creator A5018426593 @default.
- W3089378041 creator A5021555728 @default.
- W3089378041 creator A5021777739 @default.
- W3089378041 creator A5022210720 @default.
- W3089378041 creator A5024290875 @default.
- W3089378041 creator A5031908986 @default.
- W3089378041 creator A5032955083 @default.
- W3089378041 creator A5034981004 @default.
- W3089378041 creator A5039878413 @default.
- W3089378041 creator A5045960667 @default.
- W3089378041 creator A5049361243 @default.
- W3089378041 creator A5053527094 @default.
- W3089378041 creator A5056248574 @default.
- W3089378041 creator A5060591126 @default.
- W3089378041 creator A5063858269 @default.
- W3089378041 creator A5064731125 @default.
- W3089378041 creator A5064823007 @default.
- W3089378041 creator A5070466541 @default.
- W3089378041 creator A5072335941 @default.
- W3089378041 creator A5077868583 @default.
- W3089378041 creator A5079134897 @default.
- W3089378041 creator A5080334177 @default.
- W3089378041 creator A5082338034 @default.
- W3089378041 creator A5087272196 @default.
- W3089378041 creator A5088012800 @default.
- W3089378041 date "2020-09-29" @default.
- W3089378041 modified "2023-10-15" @default.
- W3089378041 title "Prediction of the Age at Onset of Spinocerebellar Ataxia Type 3 with Machine Learning" @default.
- W3089378041 cites W1180737757 @default.
- W3089378041 cites W1814590669 @default.
- W3089378041 cites W1973055895 @default.
- W3089378041 cites W1975087565 @default.
- W3089378041 cites W2004695100 @default.
- W3089378041 cites W2016460575 @default.
- W3089378041 cites W2023852892 @default.
- W3089378041 cites W2039134233 @default.
- W3089378041 cites W2047814561 @default.
- W3089378041 cites W2060932845 @default.
- W3089378041 cites W2078427038 @default.
- W3089378041 cites W2079617881 @default.
- W3089378041 cites W2088859305 @default.
- W3089378041 cites W2095529469 @default.
- W3089378041 cites W2121745049 @default.
- W3089378041 cites W2132539907 @default.
- W3089378041 cites W2139412695 @default.
- W3089378041 cites W2156886710 @default.
- W3089378041 cites W2165713272 @default.
- W3089378041 cites W2342089554 @default.
- W3089378041 cites W2342330771 @default.
- W3089378041 cites W2470233764 @default.
- W3089378041 cites W2552415891 @default.
- W3089378041 cites W2769286249 @default.
- W3089378041 cites W2888648680 @default.
- W3089378041 cites W2888748554 @default.
- W3089378041 cites W2896817483 @default.
- W3089378041 cites W2896829099 @default.
- W3089378041 cites W2938809977 @default.
- W3089378041 cites W2972268072 @default.
- W3089378041 cites W2972400447 @default.
- W3089378041 cites W2975972605 @default.
- W3089378041 cites W2979638097 @default.
- W3089378041 cites W2990189965 @default.
- W3089378041 cites W4210268857 @default.
- W3089378041 doi "https://doi.org/10.1002/mds.28311" @default.
- W3089378041 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32991004" @default.
- W3089378041 hasPublicationYear "2020" @default.
- W3089378041 type Work @default.
- W3089378041 sameAs 3089378041 @default.
- W3089378041 citedByCount "9" @default.
- W3089378041 countsByYear W30893780412021 @default.
- W3089378041 countsByYear W30893780412022 @default.
- W3089378041 countsByYear W30893780412023 @default.
- W3089378041 crossrefType "journal-article" @default.
- W3089378041 hasAuthorship W3089378041A5001030035 @default.
- W3089378041 hasAuthorship W3089378041A5002674172 @default.
- W3089378041 hasAuthorship W3089378041A5004674953 @default.
- W3089378041 hasAuthorship W3089378041A5005348028 @default.
- W3089378041 hasAuthorship W3089378041A5012834626 @default.
- W3089378041 hasAuthorship W3089378041A5018426593 @default.
- W3089378041 hasAuthorship W3089378041A5021555728 @default.
- W3089378041 hasAuthorship W3089378041A5021777739 @default.
- W3089378041 hasAuthorship W3089378041A5022210720 @default.
- W3089378041 hasAuthorship W3089378041A5024290875 @default.
- W3089378041 hasAuthorship W3089378041A5031908986 @default.
- W3089378041 hasAuthorship W3089378041A5032955083 @default.
- W3089378041 hasAuthorship W3089378041A5034981004 @default.
- W3089378041 hasAuthorship W3089378041A5039878413 @default.
- W3089378041 hasAuthorship W3089378041A5045960667 @default.
- W3089378041 hasAuthorship W3089378041A5049361243 @default.
- W3089378041 hasAuthorship W3089378041A5053527094 @default.
- W3089378041 hasAuthorship W3089378041A5056248574 @default.