Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089406903> ?p ?o ?g. }
- W3089406903 endingPage "108509" @default.
- W3089406903 startingPage "108509" @default.
- W3089406903 abstract "The vibration signal collected in the industrial field usually has a low signal-to-noise ratio, which is not enough for the recognition of faults. Aiming at the difficulty of bearing fault diagnosis under strong noise interference, a bearing fault diagnosis algorithm based on spectrum characteristics and MOMEDA is extracted in this paper. First, Hankel matrix is used to split the original time-domain signal to construct a time-domain segmentation matrix to obtain various manifestations of noise in the signal. Then, the signal spectrum is reconstructed by adopting the method of spectrum fusion, effectively eliminating the random characteristics in the noise. Finally, the MOMEDA is used to construct a multi-point kurtosis spectrum and extract the characteristic frequency of the fault with periodic impact characteristics in the side band. Experimental results show that the method proposed in this paper can extract the characteristic frequency of faulty bearing under stronger noise interference." @default.
- W3089406903 created "2020-10-08" @default.
- W3089406903 creator A5022256556 @default.
- W3089406903 creator A5026103112 @default.
- W3089406903 creator A5066755402 @default.
- W3089406903 date "2021-02-01" @default.
- W3089406903 modified "2023-10-16" @default.
- W3089406903 title "Research on bearing fault diagnosis based on spectrum characteristics under strong noise interference" @default.
- W3089406903 cites W1964511482 @default.
- W3089406903 cites W2019024593 @default.
- W3089406903 cites W2030649852 @default.
- W3089406903 cites W2056700360 @default.
- W3089406903 cites W2067376192 @default.
- W3089406903 cites W2374984480 @default.
- W3089406903 cites W2437984376 @default.
- W3089406903 cites W2506416509 @default.
- W3089406903 cites W2564549268 @default.
- W3089406903 cites W2593694313 @default.
- W3089406903 cites W2598228258 @default.
- W3089406903 cites W2766319942 @default.
- W3089406903 cites W2803562366 @default.
- W3089406903 cites W2839815754 @default.
- W3089406903 cites W2886628912 @default.
- W3089406903 cites W2903854667 @default.
- W3089406903 cites W2904278575 @default.
- W3089406903 cites W2908969754 @default.
- W3089406903 cites W2909443287 @default.
- W3089406903 cites W2910177862 @default.
- W3089406903 cites W2920810181 @default.
- W3089406903 cites W2948140888 @default.
- W3089406903 cites W2948861530 @default.
- W3089406903 cites W2963921977 @default.
- W3089406903 cites W2969249140 @default.
- W3089406903 cites W2998506103 @default.
- W3089406903 cites W3036548030 @default.
- W3089406903 doi "https://doi.org/10.1016/j.measurement.2020.108509" @default.
- W3089406903 hasPublicationYear "2021" @default.
- W3089406903 type Work @default.
- W3089406903 sameAs 3089406903 @default.
- W3089406903 citedByCount "41" @default.
- W3089406903 countsByYear W30894069032021 @default.
- W3089406903 countsByYear W30894069032022 @default.
- W3089406903 countsByYear W30894069032023 @default.
- W3089406903 crossrefType "journal-article" @default.
- W3089406903 hasAuthorship W3089406903A5022256556 @default.
- W3089406903 hasAuthorship W3089406903A5026103112 @default.
- W3089406903 hasAuthorship W3089406903A5066755402 @default.
- W3089406903 hasConcept C103824480 @default.
- W3089406903 hasConcept C105795698 @default.
- W3089406903 hasConcept C11413529 @default.
- W3089406903 hasConcept C115961682 @default.
- W3089406903 hasConcept C121332964 @default.
- W3089406903 hasConcept C127162648 @default.
- W3089406903 hasConcept C127313418 @default.
- W3089406903 hasConcept C127413603 @default.
- W3089406903 hasConcept C154945302 @default.
- W3089406903 hasConcept C165205528 @default.
- W3089406903 hasConcept C166963901 @default.
- W3089406903 hasConcept C175551986 @default.
- W3089406903 hasConcept C19118579 @default.
- W3089406903 hasConcept C199360897 @default.
- W3089406903 hasConcept C199978012 @default.
- W3089406903 hasConcept C207658827 @default.
- W3089406903 hasConcept C24326235 @default.
- W3089406903 hasConcept C24890656 @default.
- W3089406903 hasConcept C2776257435 @default.
- W3089406903 hasConcept C2778116611 @default.
- W3089406903 hasConcept C2779843651 @default.
- W3089406903 hasConcept C31972630 @default.
- W3089406903 hasConcept C32022120 @default.
- W3089406903 hasConcept C33923547 @default.
- W3089406903 hasConcept C41008148 @default.
- W3089406903 hasConcept C76155785 @default.
- W3089406903 hasConcept C99498987 @default.
- W3089406903 hasConceptScore W3089406903C103824480 @default.
- W3089406903 hasConceptScore W3089406903C105795698 @default.
- W3089406903 hasConceptScore W3089406903C11413529 @default.
- W3089406903 hasConceptScore W3089406903C115961682 @default.
- W3089406903 hasConceptScore W3089406903C121332964 @default.
- W3089406903 hasConceptScore W3089406903C127162648 @default.
- W3089406903 hasConceptScore W3089406903C127313418 @default.
- W3089406903 hasConceptScore W3089406903C127413603 @default.
- W3089406903 hasConceptScore W3089406903C154945302 @default.
- W3089406903 hasConceptScore W3089406903C165205528 @default.
- W3089406903 hasConceptScore W3089406903C166963901 @default.
- W3089406903 hasConceptScore W3089406903C175551986 @default.
- W3089406903 hasConceptScore W3089406903C19118579 @default.
- W3089406903 hasConceptScore W3089406903C199360897 @default.
- W3089406903 hasConceptScore W3089406903C199978012 @default.
- W3089406903 hasConceptScore W3089406903C207658827 @default.
- W3089406903 hasConceptScore W3089406903C24326235 @default.
- W3089406903 hasConceptScore W3089406903C24890656 @default.
- W3089406903 hasConceptScore W3089406903C2776257435 @default.
- W3089406903 hasConceptScore W3089406903C2778116611 @default.
- W3089406903 hasConceptScore W3089406903C2779843651 @default.
- W3089406903 hasConceptScore W3089406903C31972630 @default.
- W3089406903 hasConceptScore W3089406903C32022120 @default.
- W3089406903 hasConceptScore W3089406903C33923547 @default.