Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089504010> ?p ?o ?g. }
- W3089504010 endingPage "181942" @default.
- W3089504010 startingPage "181930" @default.
- W3089504010 abstract "This paper concerns the nonlinear filter designing methods in the information space of the nonlinear systems with non-Gaussian noises. Firstly, the prediction information vector is obtained by the traditional square root cubature information filtering algorithm. Then, under the maximum correntropy criterion, the prediction information vector is corrected with the contribution information vector obtained by the non-Gaussian measurement. The information filtering gain is obtained by utilizing the state information correntropy matrix and the measurement information correntropy matrix, in which, the state prediction is taken as the state value. In order to improve the advantage of the above nonlinear non-Gaussian information filter in filtering accuracy, with the help of fixed-point theory, an iterative computation method is further developed to update the estimation information vector and the state estimate. The effectiveness of the two proposed nonlinear non-Gaussian filtering methods is illustrated in final four simulation examples." @default.
- W3089504010 created "2020-10-08" @default.
- W3089504010 creator A5007154188 @default.
- W3089504010 creator A5023636299 @default.
- W3089504010 creator A5034570500 @default.
- W3089504010 creator A5063193417 @default.
- W3089504010 creator A5079950677 @default.
- W3089504010 date "2020-01-01" @default.
- W3089504010 modified "2023-10-15" @default.
- W3089504010 title "Nonlinear Non-Gaussian Estimation Using Maximum Correntropy Square Root Cubature Information Filtering" @default.
- W3089504010 cites W1701760339 @default.
- W3089504010 cites W1982092890 @default.
- W3089504010 cites W1982322007 @default.
- W3089504010 cites W1990814364 @default.
- W3089504010 cites W2013122069 @default.
- W3089504010 cites W2035694848 @default.
- W3089504010 cites W2038228887 @default.
- W3089504010 cites W2044206947 @default.
- W3089504010 cites W2070007446 @default.
- W3089504010 cites W2084945092 @default.
- W3089504010 cites W2094799033 @default.
- W3089504010 cites W2105934661 @default.
- W3089504010 cites W2121990344 @default.
- W3089504010 cites W2138784338 @default.
- W3089504010 cites W2141023477 @default.
- W3089504010 cites W2144903371 @default.
- W3089504010 cites W2150342245 @default.
- W3089504010 cites W2200680720 @default.
- W3089504010 cites W2327058717 @default.
- W3089504010 cites W2375142064 @default.
- W3089504010 cites W2523327093 @default.
- W3089504010 cites W2553413742 @default.
- W3089504010 cites W2569835417 @default.
- W3089504010 cites W2588868028 @default.
- W3089504010 cites W2613028879 @default.
- W3089504010 cites W2770746583 @default.
- W3089504010 cites W2770764691 @default.
- W3089504010 cites W2772311897 @default.
- W3089504010 cites W2791974556 @default.
- W3089504010 cites W2795980524 @default.
- W3089504010 cites W2803565927 @default.
- W3089504010 cites W2806131213 @default.
- W3089504010 cites W2891953096 @default.
- W3089504010 cites W2899175414 @default.
- W3089504010 cites W2905309910 @default.
- W3089504010 cites W2917903122 @default.
- W3089504010 cites W2921643066 @default.
- W3089504010 cites W2939399986 @default.
- W3089504010 cites W2945661351 @default.
- W3089504010 cites W2961333734 @default.
- W3089504010 cites W2963134661 @default.
- W3089504010 cites W3009947011 @default.
- W3089504010 doi "https://doi.org/10.1109/access.2020.3027618" @default.
- W3089504010 hasPublicationYear "2020" @default.
- W3089504010 type Work @default.
- W3089504010 sameAs 3089504010 @default.
- W3089504010 citedByCount "6" @default.
- W3089504010 countsByYear W30895040102021 @default.
- W3089504010 countsByYear W30895040102022 @default.
- W3089504010 countsByYear W30895040102023 @default.
- W3089504010 crossrefType "journal-article" @default.
- W3089504010 hasAuthorship W3089504010A5007154188 @default.
- W3089504010 hasAuthorship W3089504010A5023636299 @default.
- W3089504010 hasAuthorship W3089504010A5034570500 @default.
- W3089504010 hasAuthorship W3089504010A5063193417 @default.
- W3089504010 hasAuthorship W3089504010A5079950677 @default.
- W3089504010 hasBestOaLocation W30895040101 @default.
- W3089504010 hasConcept C106131492 @default.
- W3089504010 hasConcept C11413529 @default.
- W3089504010 hasConcept C11577676 @default.
- W3089504010 hasConcept C115961682 @default.
- W3089504010 hasConcept C119857082 @default.
- W3089504010 hasConcept C121332964 @default.
- W3089504010 hasConcept C126255220 @default.
- W3089504010 hasConcept C154945302 @default.
- W3089504010 hasConcept C158622935 @default.
- W3089504010 hasConcept C163716315 @default.
- W3089504010 hasConcept C178674793 @default.
- W3089504010 hasConcept C2524010 @default.
- W3089504010 hasConcept C2777798563 @default.
- W3089504010 hasConcept C31972630 @default.
- W3089504010 hasConcept C33923547 @default.
- W3089504010 hasConcept C41008148 @default.
- W3089504010 hasConcept C45374587 @default.
- W3089504010 hasConcept C62520636 @default.
- W3089504010 hasConcept C65892221 @default.
- W3089504010 hasConcept C74650414 @default.
- W3089504010 hasConceptScore W3089504010C106131492 @default.
- W3089504010 hasConceptScore W3089504010C11413529 @default.
- W3089504010 hasConceptScore W3089504010C11577676 @default.
- W3089504010 hasConceptScore W3089504010C115961682 @default.
- W3089504010 hasConceptScore W3089504010C119857082 @default.
- W3089504010 hasConceptScore W3089504010C121332964 @default.
- W3089504010 hasConceptScore W3089504010C126255220 @default.
- W3089504010 hasConceptScore W3089504010C154945302 @default.
- W3089504010 hasConceptScore W3089504010C158622935 @default.
- W3089504010 hasConceptScore W3089504010C163716315 @default.
- W3089504010 hasConceptScore W3089504010C178674793 @default.