Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089571519> ?p ?o ?g. }
- W3089571519 endingPage "297" @default.
- W3089571519 startingPage "279" @default.
- W3089571519 abstract "Statistical modeling with sparsity has become an active research topic in the fields of statistics and machine learning. Because the true sparsity pattern of a model is generally unknown aforehand, it is often explored by a sparse estimation procedure, like least absolute shrinkage and selection operator (lasso). In this study, a penalized least squares (PLS) method for structural equation modeling (SEM) with ordinal data is developed. PLS describes data generation by an underlying response approach, and uses a least squares (LS) fitting function to construct a penalized estimation criterion. A numerical simulation was used to compare PLS with existing penalized likelihood (PL) in terms of averaged mean square error, absolute bias, and the correctness of the model. Based on these empirical findings, a hybrid PLS was also proposed to improve both PL and PLS. The hybrid PLS first chooses an optimal sparsity pattern by PL, then estimates model parameters by an unpenalized LS under the model selected by PL. We also extended PLS to cases of mixed type data and multi-group analysis. All proposed methods could be realized in the R package lslx." @default.
- W3089571519 created "2020-10-08" @default.
- W3089571519 creator A5026377268 @default.
- W3089571519 date "2020-09-29" @default.
- W3089571519 modified "2023-10-13" @default.
- W3089571519 title "Penalized Least Squares for Structural Equation Modeling with Ordinal Responses" @default.
- W3089571519 cites W1523985187 @default.
- W3089571519 cites W1561373080 @default.
- W3089571519 cites W1577223643 @default.
- W3089571519 cites W1819467863 @default.
- W3089571519 cites W1891298814 @default.
- W3089571519 cites W1965125844 @default.
- W3089571519 cites W1970325005 @default.
- W3089571519 cites W1971208478 @default.
- W3089571519 cites W1974134238 @default.
- W3089571519 cites W1982035138 @default.
- W3089571519 cites W1985442257 @default.
- W3089571519 cites W1985912981 @default.
- W3089571519 cites W1993795431 @default.
- W3089571519 cites W1996467017 @default.
- W3089571519 cites W2003870468 @default.
- W3089571519 cites W2007697986 @default.
- W3089571519 cites W2010182987 @default.
- W3089571519 cites W2017028228 @default.
- W3089571519 cites W2019448438 @default.
- W3089571519 cites W2019837960 @default.
- W3089571519 cites W2026490152 @default.
- W3089571519 cites W2034418568 @default.
- W3089571519 cites W2035779913 @default.
- W3089571519 cites W2037357237 @default.
- W3089571519 cites W2040890982 @default.
- W3089571519 cites W2041452615 @default.
- W3089571519 cites W2049333344 @default.
- W3089571519 cites W2059055839 @default.
- W3089571519 cites W2064417135 @default.
- W3089571519 cites W2068673986 @default.
- W3089571519 cites W2069913666 @default.
- W3089571519 cites W2070468459 @default.
- W3089571519 cites W2074682976 @default.
- W3089571519 cites W2076118331 @default.
- W3089571519 cites W2081724349 @default.
- W3089571519 cites W2085076418 @default.
- W3089571519 cites W2086604918 @default.
- W3089571519 cites W2087034140 @default.
- W3089571519 cites W2098705272 @default.
- W3089571519 cites W2102264754 @default.
- W3089571519 cites W2115265604 @default.
- W3089571519 cites W2115621436 @default.
- W3089571519 cites W2117183956 @default.
- W3089571519 cites W2122825543 @default.
- W3089571519 cites W2123334785 @default.
- W3089571519 cites W2134044676 @default.
- W3089571519 cites W2135046866 @default.
- W3089571519 cites W2142635246 @default.
- W3089571519 cites W2157703634 @default.
- W3089571519 cites W2161517243 @default.
- W3089571519 cites W2168175751 @default.
- W3089571519 cites W2326770218 @default.
- W3089571519 cites W2336766371 @default.
- W3089571519 cites W2463350095 @default.
- W3089571519 cites W2510686307 @default.
- W3089571519 cites W2515051992 @default.
- W3089571519 cites W2529026265 @default.
- W3089571519 cites W2589060690 @default.
- W3089571519 cites W2607263590 @default.
- W3089571519 cites W2793380715 @default.
- W3089571519 cites W2914891039 @default.
- W3089571519 cites W2943834328 @default.
- W3089571519 cites W2971770644 @default.
- W3089571519 cites W2989464582 @default.
- W3089571519 cites W3018725027 @default.
- W3089571519 cites W3020482790 @default.
- W3089571519 cites W4247571494 @default.
- W3089571519 cites W4254972346 @default.
- W3089571519 cites W4294541781 @default.
- W3089571519 cites W4298091299 @default.
- W3089571519 doi "https://doi.org/10.1080/00273171.2020.1820309" @default.
- W3089571519 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32990059" @default.
- W3089571519 hasPublicationYear "2020" @default.
- W3089571519 type Work @default.
- W3089571519 sameAs 3089571519 @default.
- W3089571519 citedByCount "4" @default.
- W3089571519 countsByYear W30895715192021 @default.
- W3089571519 countsByYear W30895715192022 @default.
- W3089571519 countsByYear W30895715192023 @default.
- W3089571519 crossrefType "journal-article" @default.
- W3089571519 hasAuthorship W3089571519A5026377268 @default.
- W3089571519 hasConcept C105795698 @default.
- W3089571519 hasConcept C11413529 @default.
- W3089571519 hasConcept C136764020 @default.
- W3089571519 hasConcept C139945424 @default.
- W3089571519 hasConcept C153180895 @default.
- W3089571519 hasConcept C154945302 @default.
- W3089571519 hasConcept C185429906 @default.
- W3089571519 hasConcept C22354355 @default.
- W3089571519 hasConcept C33923547 @default.
- W3089571519 hasConcept C37616216 @default.
- W3089571519 hasConcept C41008148 @default.